| A. | y=2sin2x | B. | y=2sin(2x-$\frac{π}{3}$) | C. | y=2sin(2x-$\frac{π}{6}$) | D. | y=2sin(x-$\frac{π}{6}$) |
分析 依题意,可求周期T,利用周期公式可求ω,再由点($\frac{5π}{12}$,2)在函数图象上,结合φ的范围可求得φ,从而可得y=f(x)的解析式,最后利用函数y=Asin(ωx+φ)的图象变换即可求得将f(x)的图象向左边平移$\frac{π}{6}$ 个长度单位所得图象对应的函数解析式.
解答 解:依题意,$\frac{3}{4}$T=$\frac{5π}{12}$-(-$\frac{π}{3}$),
∴T=$\frac{2π}{ω}$=π,可得:ω=2;
又点($\frac{5π}{12}$,2)在函数图象上,可得:2sin[2×$\frac{5π}{12}$+φ]=2,
∴2×$\frac{5π}{12}$+φ=2kπ+$\frac{π}{2}$(k∈Z),
∴φ=2kπ-$\frac{π}{3}$(k∈Z),又-$\frac{π}{2}$<φ<$\frac{π}{2}$,
∴φ=-$\frac{π}{3}$,
∴f(x)=2sin(2x-$\frac{π}{3}$),
∴将f(x)的图象向左边平移$\frac{π}{6}$个长度单位,
得y=f(x+$\frac{π}{6}$)=2sin[2(x+$\frac{π}{6}$)-$\frac{π}{3}$]=2sin2x,
故选:A.
点评 本题考查函数y=Asin(ωx+φ)的图象的解析式的确定及图象变换,考查了数形结合思想和分析运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,2$\sqrt{2}$) | B. | (2,+∞) | C. | (-∞,2) | D. | ($\frac{1}{2}$,$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-y+3=0 | B. | x-y-3=0 | C. | x+y-1=0 | D. | x+y+3=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com