精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则把函数f(x)的图象向左平移$\frac{π}{6}$后得到的函数图象的解析式是(  )
A.y=2sin2xB.y=2sin(2x-$\frac{π}{3}$)C.y=2sin(2x-$\frac{π}{6}$)D.y=2sin(x-$\frac{π}{6}$)

分析 依题意,可求周期T,利用周期公式可求ω,再由点($\frac{5π}{12}$,2)在函数图象上,结合φ的范围可求得φ,从而可得y=f(x)的解析式,最后利用函数y=Asin(ωx+φ)的图象变换即可求得将f(x)的图象向左边平移$\frac{π}{6}$ 个长度单位所得图象对应的函数解析式.

解答 解:依题意,$\frac{3}{4}$T=$\frac{5π}{12}$-(-$\frac{π}{3}$),
∴T=$\frac{2π}{ω}$=π,可得:ω=2;
又点($\frac{5π}{12}$,2)在函数图象上,可得:2sin[2×$\frac{5π}{12}$+φ]=2,
∴2×$\frac{5π}{12}$+φ=2kπ+$\frac{π}{2}$(k∈Z),
∴φ=2kπ-$\frac{π}{3}$(k∈Z),又-$\frac{π}{2}$<φ<$\frac{π}{2}$,
∴φ=-$\frac{π}{3}$,
∴f(x)=2sin(2x-$\frac{π}{3}$),
∴将f(x)的图象向左边平移$\frac{π}{6}$个长度单位,
得y=f(x+$\frac{π}{6}$)=2sin[2(x+$\frac{π}{6}$)-$\frac{π}{3}$]=2sin2x,
故选:A.

点评 本题考查函数y=Asin(ωx+φ)的图象的解析式的确定及图象变换,考查了数形结合思想和分析运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2-bx+lnx,a,b∈R.
(1)当a=b=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当b=2a+1时,讨论函数f(x)的单调性;
(3)当a=1,b>3时,记函数f(x)的导函数f′(x)的两个零点是x1和x2(x1<x2),求证:f(x1)-f(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)在定义域R上满足f(-x)-f(x),当x∈[0,2]时,f(x)=-x2+2x;当x∈(2,+∞)时,f(x)=2x-4.
(1)求f(x)的解析式;
(2)若x≥0解关于x的不等式f(x+1)>f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将十进制数89转化为二进制数为(  )
A.1111110B.1010101C.1001111D.1011001

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,若AC=3,BC=4,AB=5,以AB为轴将三角形旋转一周得到一几何体,求该几何体的表面积与体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a=2,A=45°,若此三角形有两解,则b的取值范围是(  )
A.(2,2$\sqrt{2}$)B.(2,+∞)C.(-∞,2)D.($\frac{1}{2}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,正三棱柱ABC-A1B1C1的所有棱长都有2,D为CC1中点.
(1)求证:面AB1C⊥面A1BD;
(2)求二面角B-A1D-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.经过圆C:(x+1)2+(y-2)2=4的圆心且倾斜角为45°的直线方程为(  )
A.x-y+3=0B.x-y-3=0C.x+y-1=0D.x+y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行如图所示程序框图,则输出的S为(  )
A.10B.9C.8D.以上都不对

查看答案和解析>>

同步练习册答案