精英家教网 > 高中数学 > 题目详情
2.在△ABC中,设a=($\sqrt{3}$-1)c,$\frac{sinBcosC}{cosBsinC}$=$\frac{2a-c}{c}$,求三角形的三内角.

分析 利用正弦定理,结合正弦的和角公式,求出B.利用a=($\sqrt{3}$-1)c,求出A,C.

解答 解:∵$\frac{sinBcosC}{cosBsinC}$=$\frac{2a-c}{c}$,
∴$\frac{sinBcosC}{cosBsinC}$=$\frac{2sinA-sinC}{sinC}$,
∴sinBcosC=2sinAcosB-sinCcosB,
移项利用正弦的和角公式得sin(B+C)=2sinAcosB=sinA,
∴cosB=$\frac{1}{2}$,
∴B=60°,
而a=($\sqrt{3}$-1)c,
∴sin(120°-C)=($\sqrt{3}$-1)sinC
∴tanC=2+$\sqrt{3}$.
∴C=75°,A=45°

点评 本题考查正弦定理,正弦的和角公式,考查学生的计算能力,正确运用公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时自身分裂为2个,现有一个这样的细菌和500个病毒,则细菌将病毒全部杀死至少需要(  )
A.7秒钟B.8秒钟C.9秒钟D.10秒钟

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,EC=CA=2BD,M是EA的中点.求证:
(1)DE=DA;      
(2)DM∥平面ABC       
(3)平面BDM⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a、b、c分别是△ABC的三个内角A、B、C的对边,且2asin(C+$\frac{π}{3}$)=$\sqrt{3}$b.
(1)求角A的值:
(11)若AB=3,AC边上的中线BD的长为$\sqrt{13}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如果一条直线a与平面α平行,在什么条件下直线a与平面α内的直线平行呢?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}前n项和为Sn,已知a1=1,a2=6,Sn=3Sn-1-2Sn-2+2n(n≥3).
(1)求证:{$\frac{{a}_{n}}{{2}^{n}}$}(n∈N*)是等差数列;
(2)求{an}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.实数a、b满足①2b≥a2-4a;②b≤$\sqrt{4a-{a}^{2}}$;③(|a-2|+|b|-2)(|a-2|+|b|-3)≤0这三个条件,则|a-b-6|的范围是(  )
A.[2,4+2$\sqrt{2}$]B.[$\frac{3}{2}$,7]C.[$\frac{3}{2}$,4+2$\sqrt{2}$]D.[4-2$\sqrt{2}$,7]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{ax+1}{x+2}$,x∈(2,+∞).
(1)当a<0时,用函数单调性定义证明f(x)在(-2,+∞) 上为减函数;
(2)若f(x)在区间(-2,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x<1,求x+1+$\frac{1}{x-1}$的最大值.

查看答案和解析>>

同步练习册答案