【题目】一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )
A.平行B.垂直C.相交不垂直D.不确定
科目:高中数学 来源: 题型:
【题目】“健步走”是一种方便而又有效的锻炼方式,李老师每天坚持“健步走”,并用计步器进行统计.他最近8天“健步走”步数的条形统计图及相应的消耗能量数据表如下:
![]()
(1)求李老师这8天“健步走”步数的平均数;
(2)从步数为16千步,17千步,18千步的6天中任选2天,设李老师这2天通过“健步走”消耗的能量和为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.圆锥的底面是圆面,侧面是曲面
B.用一张扇形的纸片可以卷成一个圆锥
C.一个物体上、下两个面是相等的圆面,那么它一定是一个圆柱
D.圆台的任意两条母线的延长线可能相交也可能不相交
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-1:几何证明选讲
如图所示,已知圆
外有一点
,作圆
的切线
,
为切点,过
的中点
,作割线
,交圆于
、
两点,连接
并延长,交圆
于点
,连接
交圆
于点
,若
.
![]()
(Ⅰ)求证:
;
(Ⅱ)求证:四边形
是平行四边形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),在三角形
中,
为其中位线,且
,若沿
将三角形
折起,使
,构成四棱锥
,且
.
![]()
(1)求证:平面
平面
;
(2)当 异面直线
与
所成的角为
时,求折起的角度
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象关于直线
对称.
(1)求实数
的值;
(2)若对任意的
,使得
有解,求实数
的取值范围;
(3)若
时,关于
的方程
有四个不等式的实根,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,椭圆
过点
,直线
交
轴于
,且
,
为坐标原点.
(1)求椭圆
的方程;
(2)设
是椭圆
的上顶点,过点
分别作直线
交椭圆
于
两点,设这两条直线的斜率分别为
,且
,证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取
个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第
个农户的年收入
(万元),年积蓄
(万元),经过数据处理得![]()
(Ⅰ)已知家庭的年结余
对年收入
具有线性相关关系,求线性回归方程;
(Ⅱ)若该地区的农户年积蓄在
万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?
附:在
中,
其中
为样本平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是
(t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于两点A,B,且
,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com