精英家教网 > 高中数学 > 题目详情

【题目】脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得

(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;

(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?

附:在 中, 其中为样本平均值.

【答案】(Ⅰ) ;(Ⅱ)万元.

【解析】试题分析:(Ⅰ)利用题中所给数据和最小二乘法求出相关系数,进而求出线性回归方程;(Ⅱ)利用线性回归方程进行预测.

试题解析:(Ⅰ)由题意知所以线性回归方程为

(Ⅱ)令

由此可预测该农户的年收入最低为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面的数字分别作为点P的横坐标和纵坐标.

1求点P落在区域C:x2+y2≤10内的概率;

2若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是(

A.平行B.垂直C.相交不垂直D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列调查方式中合适的是(

A.要了解一批节能灯的使用寿命,采用普查方式

B.调查你所在班级同学的身高,采用抽样调查方式

C.调查沱江某段水域的水质情况,采用抽样调查方式

D.调查全市中学生每天的就寝时间,采用普查方式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C:(x﹣2)2+(y+1)2=5,过点P(5,0)且斜率为k的直线与圆C相交于不同的两点A,B.

(I)求k的取值范围;

(Ⅱ)若弦长|AB|=4,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

1)若函数在区间上是减函数,求实数的取值范围;

2)设函数,当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1若函数在定义域上是单调增函数,求的最小值;

2若方程在区间上有两个不同的实根,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的顶点到左焦点的距离为,离心率.

(1)求椭圆的方程

(2)若点椭圆的右頂点,过点作互相垂直的两条射线,与椭分別交于不同的两点不与左、右顶点重合) 试判断直线是否过定点,若过定点,求出该定点的坐标若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩百分制作为样本,样本数据的茎叶图如图.

1若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率60分及60分以上为及格

2设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,估计12的值.

查看答案和解析>>

同步练习册答案