精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是t为参数).

1求曲线C的直角坐标方程和直线L的普通方程;

2设点Pm,0,若直线L与曲线C交于两点A,B,且,求实数m的值

【答案】12

【解析】

试题分析:第一问利用极坐标与平面直角坐标之间的转换关系,将曲线的极坐标方程转化为平面直角坐标方程,消参将直线的参数方程转化为普通方程,第二问根据直线的参数方程当中参数的几何意义,将直线的参数方程与曲线的平面直角坐标方程联立,消元化为关于的一元二次方程,结合根与系数之间的关系,得到关于的等量关系式,求得结果,一定要验证两个交点的存在性

试题解析:1曲线C的极坐标方程是,化为

可得直角坐标方程:

直线L的参数方程是t为参数

消去参数t可得

t为参数,代入方程:

化为

,解得-1<m<3

解得又满足实数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是(

A.平行B.垂直C.相交不垂直D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1若函数在定义域上是单调增函数,求的最小值;

2若方程在区间上有两个不同的实根,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的顶点到左焦点的距离为,离心率.

(1)求椭圆的方程

(2)若点椭圆的右頂点,过点作互相垂直的两条射线,与椭分別交于不同的两点不与左、右顶点重合) 试判断直线是否过定点,若过定点,求出该定点的坐标若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在复平面内,复数3-4i,i(2+i)对应的点分别是AB,则线段AB的中点C对应的复数为(  )

A.-2+2iB.2-2i

C.-1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市四所中学报名参加某高校今年自主招生的学生人数如下表所示:

中学

人数

为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.

1)问四所中学各抽取多少名学生?

2)在参加问卷调查的名学生中,从来自两所中学的学生当中随机抽取两名学生,用表示抽得中学的学生人数,求的分布列,数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.

1)求分数在[7080)内的频率,并补全这个频率分布直方图;

2)从频率分布直方图中,估计本次考试的平均分;

3)若从60名学生中随机抽取2人,抽到的学生成绩在[4070)记0分,在[70100]1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩百分制作为样本,样本数据的茎叶图如图.

1若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率60分及60分以上为及格

2设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,估计12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二1班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,且将全班25人的成绩记为由右边的程序运行后,输出.据此解答如下问题:

求茎叶图中破损处分数在[50,60,[70,80,[80,90各区间段的频数;

利用频率分布直方图估计该班的数学测试成绩的众数中位数分别是多少?

查看答案和解析>>

同步练习册答案