精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面为平行四边形,.

1)求证:

2)求二面角的余弦值.

【答案】(1)见解析(2)

【解析】

中点,连接,由已知可证,可得平面,可证

由已知可得是等腰三角形,分别以轴建立空间直角坐标系,求出面与面的一个法向量,由两法向量所成角的余弦值得二面角的余弦值。

解:(1)取中点,连接.

知,.

平面

平面,∴.

2)法一:由题可得,故,所以.

所以可以为原点,分别以轴建立空间直角坐标系.

.

设平面的一个法向量为,则

.

同理可得平面的一个法向量为.

.

又二面角为锐二面角所以二面角的余弦为.

法二:设二面角的大小分别为,则

.

即二面角的余弦为.

而二面角与二面角大小互补、故二面角的余弦为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,

1求证:平面平面

2,求二面角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(α)=

(1)化简f(α);

(2)α是第三象限角,cos(α)=,求f(α);

(3)α=-1860°,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,射线的普通方程为,曲线的参数方程为为参数).O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出的极坐标方程;

2)设的交点为P(点P不为极点),的交点为Q,当上变化时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年入夏以来,我市天气反复,降雨频繁.在下图中统计了上个月前15天的气温,以及相对去年同期的气温差(今年气温-去年气温,单位:摄氏度),以下判断错误的是()

A.今年每天气温都比去年气温高B.今年的气温的平均值比去年低

C.去年8-11号气温持续上升D.今年8号气温最低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆G:x2+y2-x-y=0,经过椭圆的右焦点F及上顶点B,过圆外一点(m,0)(m>a)且倾斜角为的直线l交椭圆于C,D两点.

1)求椭圆的方程;

2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,若函数有4个零点,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的参数方程为:为参数).

1)求曲线的直角坐标方程;

2)设曲线交于点,已知点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,若此椭圆上存在不同的两点A,B关于直线y=4x+m对称,则实数m的取值范围是(  )

A. B.

C. D.

查看答案和解析>>

同步练习册答案