【题目】已知椭圆,若此椭圆上存在不同的两点A,B关于直线y=4x+m对称,则实数m的取值范围是( )
A. B.
C. D.
【答案】B
【解析】
设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),利用平方差法与直线y=4x+m可求得x0=-m,y0=-3m,点M(x0,y0)在椭圆内部,将其坐标代入椭圆方程即可求得m的取值范围.
椭圆,即:3x2+4y2-12=0,
设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),
则 3x12+4y12-12=0,①
3x22+4y22-12=0 ②
①-②得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
即 32x0(x1-x2)+42y0(y1-y2)=0,
∴ .
∴y0=3x0,代入直线方程y=4x+m得x0=-m,y0=-3m;
因为(x0,y0)在椭圆内部,
∴3m2+4(-3m)2<12,即3m2+36m2<12,解得 .
故选:B.
科目:高中数学 来源: 题型:
【题目】在四棱锥A-BCDE中,平面BCDE,底面BCDE为直角梯形,、,,F为AC上一点,且.
(1)求证:平面ADE;
(2)求异面直线AB、DE所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当a=1时,求函数的单调区间;
(2)若在上恒成立,求实数a的取值范围;
(3)是否存在实数a,使函数的最小值是3?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额元)、专业二等奖学金(奖金额元)及专业三等奖学金(奖金额元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校年名学生周课外平均学习时间频率分布直方图,图(2)是这名学生在年周课外平均学习时间段获得专业奖学金的频率柱状图.
(Ⅰ)求这名学生中获得专业三等奖学金的人数;
(Ⅱ)若周课外平均学习时间超过小时称为“努力型”学生,否则称为“非努力型”学生,列联表并判断是否有的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?
(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生年获得的专业奖学金额为随机变量,求随机变量的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com