精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,EF分别为线段 的中点.

1)求证:

2)求证:

3)在线段上是否存在一点G,使平面平面,证明你的结论.

【答案】1)见解析; 2)见解析; 3)见解析.

【解析】

1)利用三角形中位线证得,由此证得,从而证得平面.

2)首先通过证明平面,证得,由此证得,根据等腰三角形的性质证得,由此证得平面.

3)取的中点,连接,通过证明平面,和平面,证得平面平面,由此证得点存在,且的中点.

1)因为EF分别为线段的中点,

所以,因为,所以

又因为平面

所以

2)因为

所以平面.因为平面,所以

又因为,所以

因为E的中点,所以

因为,所以

3)取中点为G,连接GEGF

又因为E的中点,所以

因为平面平面

所以平面.同理可证:平面

又因为,所以平面平面

所以在线段上是存在一点G,使平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数,若函数有4个零点,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:

为真为真的充分不必要条件:②为假为真的充分不必要条件;③为真为假的必要不充分条件;④为真为假的必要不充分条件.

其中,正确的结论是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,若此椭圆上存在不同的两点A,B关于直线y=4x+m对称,则实数m的取值范围是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金、专业二等奖学金及专业三等奖学金,且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校名学生周课外平均学习时间频率分布直方图,图(2)是这名学生在年周课外平均学习时间段获得专业奖学金的频率柱状图.

(Ⅰ)求这名学生中获得专业三等奖学金的人数;

(Ⅱ)若周课外平均学习时间超过小时称为“努力型”学生,否则称为“非努力型”学生,列联表并判断是否有的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过的左焦点.

(1)求的方程;

(2)直线经过的上顶点且交于两点,直线分别交于点(异于点),(异于点),证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140150),[150160),[160170]内的频率之比为421.

1)求跳绳次数落在区间[150160)内的频率;

2)用分层抽样的方法在区间[130160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130150)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为内角的对边.已知,且,则( )

A. 1B. 2C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P到两定点M(﹣30),N30)的距离满足|PM|2|PN|.

1)求证:点P的轨迹为圆;

2)记(1)中轨迹为⊙C,过定点(01)的直线l与⊙C交于AB两点,求△ABC面积的最大值,并求此时直线l的方程.

查看答案和解析>>

同步练习册答案