【题目】如图,在三棱柱中,,E,F分别为线段 的中点.
(1)求证:面;
(2)求证:面;
(3)在线段上是否存在一点G,使平面平面,证明你的结论.
【答案】(1)见解析; (2)见解析; (3)见解析.
【解析】
(1)利用三角形中位线证得,由此证得,从而证得平面.
(2)首先通过证明平面,证得,由此证得,根据等腰三角形的性质证得,由此证得平面.
(3)取的中点,连接,通过证明平面,和平面,证得平面平面,由此证得点存在,且是的中点.
(1)因为E,F分别为线段的中点,
所以,因为,所以.
又因为平面,,
所以面.
(2)因为,
所以平面.因为平面,所以.
又因为,所以.
因为,E为的中点,所以,
因为,所以面.
(3)取中点为G,连接GE、GF,
又因为E为的中点,所以.
因为平面,平面,
所以平面.同理可证:平面.
又因为,所以平面平面.
所以在线段上是存在一点G,使平面平面.
科目:高中数学 来源: 题型:
【题目】给出下列结论:
①“且为真”是“或为真”的充分不必要条件:②“且为假”是“或为真”的充分不必要条件;③“或为真”是“非为假”的必要不充分条件;④“非为真”是“且为假”的必要不充分条件.
其中,正确的结论是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金、专业二等奖学金及专业三等奖学金,且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校年名学生周课外平均学习时间频率分布直方图,图(2)是这名学生在年周课外平均学习时间段获得专业奖学金的频率柱状图.
(Ⅰ)求这名学生中获得专业三等奖学金的人数;
(Ⅱ)若周课外平均学习时间超过小时称为“努力型”学生,否则称为“非努力型”学生,列联表并判断是否有的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过的左焦点.
(1)求与的方程;
(2)直线经过的上顶点且与交于,两点,直线,与分别交于点(异于点),(异于点),证明:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140,150),[150,160),[160,170]内的频率之比为4:2:1.
(1)求跳绳次数落在区间[150,160)内的频率;
(2)用分层抽样的方法在区间[130,160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130,150)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P到两定点M(﹣3,0),N(3,0)的距离满足|PM|=2|PN|.
(1)求证:点P的轨迹为圆;
(2)记(1)中轨迹为⊙C,过定点(0,1)的直线l与⊙C交于A,B两点,求△ABC面积的最大值,并求此时直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com