分析 推导出f(x)+f(1-x)=2,由此能求出$f(0)+f(\frac{1}{2017})+f(\frac{2}{2017})+$…$+f(\frac{2015}{2017})+f(\frac{2016}{2017})+f(1)$的值.
解答 解:∵三次函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,
∴f(x)+f(1-x)=$\frac{1}{3}{x}^{3}-\frac{1}{2}{x}^{2}+3x-\frac{5}{12}$+$\frac{1}{3}(1-x)^{3}-\frac{1}{2}(1-x)^{2}+3(1-x)-\frac{5}{12}$=2,
∴$f(0)+f(\frac{1}{2017})+f(\frac{2}{2017})+$…$+f(\frac{2015}{2017})+f(\frac{2016}{2017})+f(1)$=2×1009=2018.
故答案为:2018.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,解题的关键是推导出f(x)+f(1-x)=2.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{\sqrt{2}}{2}$) | B. | (-∞,-2) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{\sqrt{2}}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S2015=2 015,a1009>1>a1007 | B. | S2015=2 015,a1007>1>a1009 | ||
| C. | S2015=-2 015,a1009>1>a1007 | D. | S2015=-2 015,a1007>1>a1009 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com