精英家教网 > 高中数学 > 题目详情
14.在四棱锥P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C-ABE的体积为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

分析 以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出三棱锥C-ABE的体积.

解答 解:以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,
A(0,0,0),B(0,2,0),C(2,2,0),D(6,0,0),P(0,0,3),
设E(a,0,c),$\overrightarrow{AE}=λ\overrightarrow{AD}$,则(a,0,c-3)=(6λ,0,-3λ),
解得a=6λ,c=3-3λ,∴E(6λ,0,3-3λ),
$\overrightarrow{CE}$=(6λ-2,-2,3-3λ),
平面ABP的法向量$\overrightarrow{n}$=(1,0,0),
∵CE∥平面PAB,∴$\overrightarrow{CE}•\overrightarrow{n}$=6λ-2=0,
解得$λ=\frac{1}{3}$,∴E(2,0,2),
∴E到平面ABC的距离d=2,
∴三棱锥C-ABE的体积:
VC-ABE=VE-ABC=$\frac{1}{3}×{S}_{△ABC}×d$=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.
故选:D.

点评 本题考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知a>π>b>1>c>0,且x=a${\;}^{\frac{1}{π}}}$,y=logπb,z=logcπ,则(  )
A.x>y>zB.x>z>yC.y>x>zD.y>z>x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于三次函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,则$f(0)+f(\frac{1}{2017})+f(\frac{2}{2017})+$…$+f(\frac{2015}{2017})+f(\frac{2016}{2017})+f(1)$=2018.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是偶函数又存在零点的是(  )
A.y=cos xB.y=sin xC.y=ln xD.y=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系xOy中,点M(0,1),N(0,4).在直线x+y-m=0上存在点Q,使得QN=2QM,则实数m的取值范围是-2$\sqrt{2}$≤m≤2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的内角A,B,C所对的边为a,b,c,已知$a=\sqrt{3}+1,b=\sqrt{3}-1$,C=120°,则c=(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)是定义在(0,+∞)上的非负可导函数,且满足xf'(x)-f(x)≤0,对任意正数a,b,若a<b,则必有(  )
A.bf(a)<af(b)B.bf(a)>af(b)C.bf(a)≤af(b)D.af(b)≤bf(a)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在(0,+∞)的函数f(x)满足9f(x)<xf'(x)<10f(x)且f(x)>0,则$\frac{f(2)}{f(1)}$的取值范围是(29,210).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线x2-y2=1,则它的右焦点到它的渐近线的距离是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案