| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{4}{3}$ |
分析 以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出三棱锥C-ABE的体积.
解答 解:
以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,
A(0,0,0),B(0,2,0),C(2,2,0),D(6,0,0),P(0,0,3),
设E(a,0,c),$\overrightarrow{AE}=λ\overrightarrow{AD}$,则(a,0,c-3)=(6λ,0,-3λ),
解得a=6λ,c=3-3λ,∴E(6λ,0,3-3λ),
$\overrightarrow{CE}$=(6λ-2,-2,3-3λ),
平面ABP的法向量$\overrightarrow{n}$=(1,0,0),
∵CE∥平面PAB,∴$\overrightarrow{CE}•\overrightarrow{n}$=6λ-2=0,
解得$λ=\frac{1}{3}$,∴E(2,0,2),
∴E到平面ABC的距离d=2,
∴三棱锥C-ABE的体积:
VC-ABE=VE-ABC=$\frac{1}{3}×{S}_{△ABC}×d$=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.
故选:D.
点评 本题考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | x>y>z | B. | x>z>y | C. | y>x>z | D. | y>z>x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | $\sqrt{6}$ | C. | 3 | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | bf(a)<af(b) | B. | bf(a)>af(b) | C. | bf(a)≤af(b) | D. | af(b)≤bf(a) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com