| A. | y=cos x | B. | y=sin x | C. | y=ln x | D. | y=x2+1 |
分析 利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.
解答 解:对于A,定义域为R,并且cos(-x)=cosx,是偶函数并且有无数个零点;
对于B,sin(-x)=-sinx,是奇函数,由无数个零点;
对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;
对于D,定义域为R,为偶函数,没有零点;
故选A.
点评 本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(-x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 8 | C. | 16 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S2015=2 015,a1009>1>a1007 | B. | S2015=2 015,a1007>1>a1009 | ||
| C. | S2015=-2 015,a1009>1>a1007 | D. | S2015=-2 015,a1007>1>a1009 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | PB⊥AF | B. | PB⊥EF | C. | AF⊥BC | D. | AE⊥BC |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{7}{12}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com