精英家教网 > 高中数学 > 题目详情
19.△ABC的内角A,B,C所对的边为a,b,c,已知$a=\sqrt{3}+1,b=\sqrt{3}-1$,C=120°,则c=(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.3D.$2\sqrt{3}$

分析 由已知利用余弦定理即可计算得解.

解答 解:∵$a=\sqrt{3}+1,b=\sqrt{3}-1$,C=120°,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=$\sqrt{10}$.
故选:A.

点评 本题主要考查了余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{t}{2}{x^2}+kx(t>0,k>0)$在x=a,x=b处分别取得极大值与极小值,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则t的值等于(  )
A.5B.4C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知{an}为等比数列,若a4+a6=8,则a1a7+2a3a7+a3a9=64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,PA垂直于圆O所在平面,AB是圆O的直径,C是圆O上一点,点A在PB,PC上的射影分别为E,F,则以下结论错误的是(  )
A.PB⊥AFB.PB⊥EFC.AF⊥BCD.AE⊥BC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在四棱锥P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C-ABE的体积为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x+sinπx-3,则$f({\frac{1}{2017}})+f({\frac{2}{2017}})+f({\frac{3}{2017}})+…+f({\frac{4033}{2017}})$的值为(  )
A.4033B.-4033C.8066D.-8066

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知约束条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≥0}\\{x≤a}\end{array}\right.$,表示的可行域为D,其中a>1,点(x0,y0)∈D,点(m,n)∈D.若3x0-y0与$\frac{n+1}{m}$的最小值相等,则实数a等于(  )
A.$\frac{5}{4}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知m为实数,函数f(x)=$\frac{2m}{3}$x3+x2-3x-mx+2,g(x)=f′(x),f′(x)是f(x)的导函数.
(1)当m=1时,求f(x)的单调区间;
(2)若g(x)在区间[-1,1]上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在f1(x)=x${\;}^{\frac{1}{2}}$,f2(x)=x2,f3(x)=2x,f4(x)=log${\;}_{\frac{1}{2}}$x四个函数中,当x1>x2>1时,使$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)成立的函数是f1(x)=x${\;}^{\frac{1}{2}}$.

查看答案和解析>>

同步练习册答案