精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)设集合A={x|f(x)≤|x-4|},集合B={x|1≤x≤2},且B⊆A,求a的取值范围.

分析 (1)将a=-3代入f(x),通过讨论x的范围,得到各个区间上不等式的解集,取并集即可;
(2)根据绝对值的几何意义求出集合A,结合B={x|1≤x≤2},且B⊆A,得到关于a的不等式组,解出即可.

解答 解:(1)a=-3时,f(x)=|x-3|+|x-2|≥3,
x≥3时,x-3+x-2≥3,解得:x≥4,
2<x<3时,3-x+x-2=1<3,不成立,
x≤2时,3-x+2-x≥3,解得:x≤1,
故不等式的解集是{x|x≥4或x≤1};
(2)由f(x)≤|x-4|,
得:|x+a|≤|x-4|-|x-2|≤|x-4-x+2|=2,
解得:-2-a≤x≤2-a,
∴A=[-2-a,2-a],而B={x|1≤x≤2},且B⊆A,
∴$\left\{\begin{array}{l}{-2-a≤1}\\{2-a≥2}\end{array}\right.$,解得:-3≤a≤0.

点评 本题考查了解绝对值不等式问题考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若直线y=x+a与曲线f(x)=x•lnx+b相切,其中a、b∈R,则b-a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,直线y=1与椭圆C的两个交点间的距离为2.点R(m,n)是椭圆C上任意一点.从原点O引圆R:(x-m)2+(y-n)2=1(m2≠1)的两条切线分别交椭圆C于点A,B.
(1)求椭圆C的方程;
(2)求四边形OARB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=lnx+(x-b)2(b∈R)在区间[$\frac{1}{2}$,2]上存在单调递增区间,则实数b的取值范围是(  )
A.(-∞,$\frac{3}{2}$)B.(-∞,$\frac{9}{4}$)C.(-$\frac{3}{2}$,$\frac{9}{4}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,其前n项的和为Sn,且满足an=$\frac{{2{S_n}^2}}{{2{S_n}-1}}$(n≥2)
(Ⅰ)证明:数列$\left\{{\frac{1}{S_n}}\right\}$是等差数列;
(Ⅱ)证明:$\frac{1}{3}{S_1}+\frac{1}{5}{S_2}+\frac{1}{7}{S_3}+…+\frac{1}{2n+1}{S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(0,$\sqrt{2}$),且其离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)斜率为$\frac{1}{2}$的直线l交椭圆C于两个不同点A、B,点M的坐标为(2,1),设直线MA与MB的斜率分别为k1、k2
①若直线l过椭圆C的左顶点,求此时k1、k2的值;
②试探究k1+k2是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某几何体的三视图如图所示,则该几何体的体积为$\frac{160}{3}$,表面积为64+32$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(1+mx)+$\frac{{x}^{2}}{2}$-mx,其中0<m≤1.
(1)当m=1时,求证:-1<x≤0时,f(x)≤$\frac{{x}^{3}}{3}$;
(2)试讨论函数y=f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,已知函数y=sin($\frac{π}{2}$-πx)的部分图象,点A($\frac{5}{6}$,m),B(${\frac{7}{3}$,n)为函数图象上的点,线段AB与x轴交于点C,及y轴上点P(0,n),则$\overrightarrow{PC}$•$\overrightarrow{AB}$=(  )
A.$\frac{{25-11\sqrt{3}}}{8}$B.$\frac{{25-9\sqrt{3}}}{8}$C.$\frac{{35-11\sqrt{3}}}{8}$D.$\frac{{35-9\sqrt{3}}}{8}$

查看答案和解析>>

同步练习册答案