| A. | (-∞,$\frac{3}{2}$) | B. | (-∞,$\frac{9}{4}$) | C. | (-$\frac{3}{2}$,$\frac{9}{4}$) | D. | ($\frac{3}{2}$,+∞) |
分析 利用导函数得到不等式恒成立,然后求解b的范围.
解答 解:∵函数f(x)在区间[$\frac{1}{2}$,2]上存在单调增区间,
∴函数f(x)在区间[$\frac{1}{2}$,2]上存在子区间使得不等式f′(x)>0成立.
f′(x)=$\frac{1}{2}$[$\frac{1}{x}$+2(x-b)]=$\frac{{2x}^{2}-2bx+1}{x}$,
设h(x)=2x2-2bx+1,则h(2)>0或h($\frac{1}{2}$)>0,
即8-4b+1>0或$\frac{1}{2}$-b+1>0,
得b<$\frac{9}{4}$.
故选:B.
点评 本题考查函数的导数的综合应用,函数恒成立,考查转化思想,不等式的解法,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | x-y-2=0 | B. | x+y-2=0 | C. | x±y-2=0 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$,6+2$\sqrt{2}$+2$\sqrt{5}$ | B. | 8,6+2$\sqrt{2}$+2$\sqrt{5}$ | C. | 8,6+2$\sqrt{2}$+4$\sqrt{5}$ | D. | $\frac{8}{3}$,6+2$\sqrt{2}$+4$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com