精英家教网 > 高中数学 > 题目详情

传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:

 

 
将三角形数1,3,6,10,记为数列,将可被5整除的三角形数按从小到大的顺序组成一个新数列. 可以推测:

(Ⅰ)是数列中的第         项;
(Ⅱ)________(用k表示)

(Ⅰ)9;(Ⅱ)

解析试题分析:(I)由题设条件可以归纳出,故,由此可知,第3个可被5整除的数为45,是数列中的第9项;
(II)由于是偶数,由(I)知,第个被5整除的数出现在第组倒数第一个,故它是数列中的第项,所以.
考点:本小题主要考查数列的递推关系,数列的表示及归纳推理,考查学生的归纳推理能力.
点评:解决此小题的关键是由题设得出相邻两个三角形数的递推关系,由此列举出三角形数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

数列满足,则               .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

a1a2, ,an为正整数,其中至少有五个不同值. 若对于任意的ij(1≤ijn),存在klkl,且异于ij)使得aiajakal,则n的最小值是     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使最大的三份之和的是较小的两份之和,则最小1份的大小是       

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在数列{an}中,a1=2,an+1=an+n,则a100=       .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(文)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为,公差为的无穷等差数列的子数列问题,为此,他取了其中第一项,第三项和第五项.
(1) 若成等比数列,求的值;
(2) 在, 的无穷等差数列中,是否存在无穷子数列,使得数列为等比数列?若存在,请给出数列的通项公式并证明;若不存在,说明理由;
(3) 他在研究过程中猜想了一个命题:“对于首项为正整数,公比为正整数()的无穷等比数  列,总可以找到一个子数列,使得构成等差数列”. 于是,他在数列中任取三项,由的大小关系去判断该命题是否正确. 他将得到什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若数列的前n项和为,则下列命题:
(1)若数列是递增数列,则数列也是递增数列;
(2)数列是递增数列的充要条件是数列的各项均为正数;
(3)若是等差数列(公差),则的充要条件是
(4)若是等比数列,则的充要条件是
其中,正确命题的个数是(   )

A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0—1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第次全行的数都为1的是第          行.
第1行      1    1
第2行         1   0   1
第3行       1   1   1   1
第4行     1   0   0   0   1
第5行   1   1   0   0   1   1
…………

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对于数列),若,….,中最大值(,则称数列为数列的“凸值数列”。如数列2,1,3,7,5的“凸值数列”为2,2,3,7,7;由此定义,下列说法正确的有______
①递减数列的“凸值数列”是常数列;②不存在数列,它的“凸值数列”还是本身;
③任意数列的“凸值数列”递增数列;④“凸值数列”为1,3,3,9,的所有数列的个数为3.

查看答案和解析>>

同步练习册答案