精英家教网 > 高中数学 > 题目详情
10.下列各组对象:(1)接近于10的实数的全体;(2)平面上到点O的距离等于1的点的全体;(3)正三角形的全体;(4)联合国常任理事国.其中能构成集合的有(  )
A.2个B.3个C.4个D.1个

分析 根据集合元素的“确定性”,可知(1)项中的对象不符合集合的定义.而其它各项都有明确的定义,符合集合元素的特征,由此可得正确选项.

解答 解:(1)“接近于10的实数的全体”的对象不确定,不能构成集合;
(2)平面上到点O的距离等于1的点的全体的对象是确定,能构成集合;
(3)正三角形的全体的对象是确定,能构成集合;
(4)联合国常任理事国的对象是确定,能构成集合.
故能构成集合的有3个,
故选:B.

点评 本题给出几组对象,要我们找出不能构成集合的对象,着重考查了集合的定义和集合元素的性质等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若对任意的x∈[-1,2],都有x2-2x+a≤0(a为常数),则a的取值范围是(  )
A.(-∞,-3]B.(-∞,0]C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将1.5-0.2,1.30.7,($\frac{2}{3}$)${\;}^{\frac{1}{3}}$三个数按从大到小的顺序排列是1.30.7>1.5-0.2>($\frac{2}{3}$)${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{{4}^{x}+a}{{2}^{x}}$为偶函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列并集:
(1){x|x2-5x+6=0}∪{x|(x-3)(x+1)=0};
(2){平行四边形}∪{梯形};
(3){奇数}∪{偶数};
(4){x|x-1>0}∪{x|x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f($\frac{x}{3}$)=$\frac{1}{2}$f(x),且当0≤x1≤x2≤1时,有f(x1)≤f(x2),则f($\frac{1}{2012}$)的值为$\frac{1}{128}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=f(n),满足f(0)=1.且f(n)=nf(n-1).n∈N*
(1)求f(1),f(2),f(3),f(4),f(5);
(2)猜想f(n)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义在R上的偶函数f(x),当x>0时,f(x)=x2-$\frac{2}{x}$,则f(-2)、f(π)、f(-$\sqrt{5}$)的大小关系为(  )
A.f(-2)>f(π)>f(-$\sqrt{5}$)B.f(-2)<f(π)<f(-$\sqrt{5}$)C.f(-2)<f(-$\sqrt{5}$)<f(π)D.f(-2)>f(-$\sqrt{5}$)>f(π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=x2+(a-2)x+1为偶函数,g(x)=$\frac{x-3+b}{{x}^{4}+2}$为奇函数,则a+b=5.

查看答案和解析>>

同步练习册答案