精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数满足,且在区间[3,5]上是单调递增,则函数在区间[1,3]上的最值是(   )
A.最大值是,最小值是B.最大值是,最小值是
C.最大值是,最小值是D.最大值是,最小值是
A
解:因为根据函数f(x)满足f(1+x)=f(1-x),可得函数f(x)的图象关于直线x=1对称,又由f(x)在区间[3,5]上单调递增,可得函数f(x)在区间[1,3]上单调递减,从而求得函数f(x)在区间[1,3]上的最值.∴函数f(x)在区间[1,3]上最大值是f(1),最小值是f(3),
故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求的取值范围;
(Ⅱ)若是以2为周期的偶函数,且当时,有.
求当时,函数的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本小题满分12分)
已知函数为奇函数,满足,且不等式 的解集 是
(1)求的值;
(2)对一切,不等式都成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知试确定的单调区间和单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出定义:若m<xm (其中m为整数),则m叫做离实数x最近的
整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①数yf(x)的定义域为R,值域为[0,];
②函数yf(x)的图象关于直线x (k∈Z)对称;
③函数yf(x)是周期函数,最小正周期为1;
④函数yf(x)在[-]上是增函数.
其中正确的命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果二次函数有两个不同的零点,则的值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是偶函数,当时,,且当时,的值域是,则的值是      (    )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在区间上为减函数,则a的取值范围是
A.(0,1)B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,  则的大小关系是
A.B.C.D.

查看答案和解析>>

同步练习册答案