精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,PB与平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
1
2
AD.
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=
1
3
PD,求异面直线AE与PB所成的角.
如图,建立空间直角坐标系A-xyz.
∵PA⊥平面ABCD,PB与平面ABC成60°,
∴∠PBA=60°,∴PA=ABtan60°=
3

取AB=1,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,
3
),D(0,2,0).
(1)∵
AC
=(1,1,0),
AP
=(0,0,
3
),
CD
=(-1,1,0),
AC
CD
=-1+1+0=0,
AP
CD
=0.
∴AC⊥CD,AP⊥CD,
∵AC∩AP=A,
∴CD⊥平面PAC.
又CD?平面PCD,
∴平面PCD⊥平面PAC.
(2)∵
PE
=
1
3
PD
PD
=(0,2,-
3
)

OE
=
OP
+
1
3
PD
=(0,0,
3
)+
1
3
(0,2,-
3
)
=(0,
2
3
2
3
3
)

∴E(0,
2
3
2
3
3
),∴
AE
=(0,
2
3
2
3
3
).
PB
=(1,0,-
3
),∴
AE
PB
=-2.
∴cos<
AE
PB
>=
AE
PB
|
AE
|•|
PB
|
=
-2
4
3
×2
=-
3
4

∴异面直线AE与PB所成的角为arccos
3
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在正四棱锥中,,则二面角的平面角的余弦值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,点E、F分别在AC,AD上,使平面BEF⊥平面ACD,且EF∥CD,则平面BEF与平面BCD所成的二面角的正弦值为                  ( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则异面直线AC1与BB1所成的角为(  )
A.arctan
2
2
3
B.arccos
2
2
3
C.arcsin
1
3
D.arctan2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AFDE,AF⊥FE,AF=AD=2DE=2.
(Ⅰ)求异面直线EF与BC所成角的大小;
(Ⅱ)若二面角A-BF-D的平面角的余弦值为
1
3
,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如图所示,则异面直线AB与CD所成角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1棱长为2,E是棱A1B1的中点.
(1)求异面直线A1B1与BD的距离;
(2)求直线EC1与BD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知AA1与BB1是异面直线,且AA1=2,BB1=1,AB⊥BB1,A1B1⊥BB1,则AA1与BB1所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,异面直线AD与BD1所成角的余弦值为(  )
A.
3
3
B.
6
3
C.
2
2
D.
1
3

查看答案和解析>>

同步练习册答案