精英家教网 > 高中数学 > 题目详情
函数f(x)=
x,x∈P
-x,x∈M
其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.给出下列四个判断其中正确的序号为
②④
②④

①若P∩M=∅,则f(P)∩f(M)=∅;   
②若P∩M≠∅,则f(P)∩f(M)≠∅;
③若P∪M=R,则f(P)∪f(M)=R;  
④若P∪M≠R,则f(P)∪f(M)≠R.
分析:根据函数f(x)=
x,x∈P
-x,x∈M
,可借助两个函数y=x与y=-x图象来研究,分析可得答案.
解答:解:由题意知函数f(P)、f(M)的图象如图所示.
设P=[x2,+∞),M=(-∞,x1],
∵|x2|<|x1|,f(P)=[f(x2),+∞),f(M)=[f(x1),+∞),∴P∩M=∅.
而f(P)∩f(M)=[f(x1),+∞)≠∅,故①错误.
同理可知②正确.
设P=[x1,+∞),M=(-∞,x2],
∵|x2|<|x1|,则P∪M=R.
f(P)=[f(x1),+∞),f(M)=[f(x2),+∞),
f(P)∪f(M)=[f(x1),+∞)≠R,故③错误.
④若P∪M≠R,则f(P)∪f(M)≠R.这是不对的
∵f(x)是函数,对于定义域内的值x,都有唯一确定的值与之对应.
∴在x∈P∩M的时候,x=-x,即x只能为0,
也就是说,P和M若有交集,则只能为{0}
若要让f(x)取到R上每一个点,就要求定义域在R上不能有遗漏,
∴P∪M≠R时,必定f(P)∪f(M)≠R,故④正确
故答案为:②④
点评:本题考查对题设条件的理解与转化能力,借助图形的直观来来帮助判断命题的正误,以形助数,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
4
x
(x>0)在区间
(0,2)
(0,2)
上递减;并利用单调性定义证明.函数f(x)=x+
4
x
(x>0)在区间
(2,+∞)
(2,+∞)
上递增.当x=
2
2
时,y最小=
4
4

(2)函数f(x)=x+
4
x
(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
  x∈(0,+∞)的最小值,并确定相应的x的值,列表如下,请观察表中y值随x值变化的特点,完成下列问题:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若当x>0时,函数f(x)=x+
4
x
时,在区间(0,2)上递减,则在
 
上递增;
(2)当x=
 
时,f(x)=x+
4
x
,x>0的最小值为
 

(3)试用定义证明f(x)=x+
4
x
,x>0在区间上(0,2)递减;
(4)函数f(x)=x+
4
x
,x<0有最值吗?是最大值还是最小值?此时x为何值?
解题说明:(1)(2)两题的结果直接填写在答题卷中横线上;(4)题直接回答,不需证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步练习册答案