精英家教网 > 高中数学 > 题目详情
(2013•朝阳区二模)若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线与抛物线y=x2+2有公共点,则此双曲线的离心率的取值范围是(  )
分析:先根据双曲线方程表示出渐近线方程与抛物线方程联立,利用判别式等于0求得a和b的关系,进而求得a和c的关系,则双曲线的离心率可得.
解答:解:依题意可知双曲线渐近线方程为y=±
b
a
x,与抛物线方程联立消去y得x2±
b
a
x+2=0 
∵渐近线与抛物线有交点
∴△=
b2
a2
-8≥0,求得b2≥8a2
∴c=
a2+b2
≥3a
∴e=
c
a
≥3.
则双曲线的离心率e的取值范围:e≥3.
故选A.
点评:本题主要考查了双曲线的简单性质和圆锥曲线之间位置关系.常需要把曲线方程联立根据判别式和曲线交点之间的关系来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•朝阳区二模)为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.
(Ⅰ)求实数a的值及参加“掷实心球”项目测试的人数;
(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;
(Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)已知等差数列{an}的公差为-2,a3是a1与a4的等比中项,则首项a1=
8
8
,前n项和Sn=
-n2+9n
-n2+9n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)已知函数f(x)=a•2|x|+1(a≠0),定义函数F(x)=
f(x),x>0
-f(x),x<0
给出下列命题:
①F(x)=|f(x)|; 
②函数F(x)是奇函数;
③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,
其中所有正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则
PA
PC1
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)
+sin2
A
2
-cos2
A
2

(Ⅰ)求函数f(A)的最大值;
(Ⅱ)若f(A)=0,C=
12
,a=
6
,求b的值.

查看答案和解析>>

同步练习册答案