【题目】《周髀算经》中给出了勾股定理的绝妙证明.如图是赵爽弦图及注文.弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.由2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.若图中勾股形的勾股比为
,向弦图内随机抛掷100颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:
,
)
![]()
A.2B.4C.6D.8
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos2x+ax2.
(1)当a=1时,求f(x)的导函数
在
上的零点个数;
(2)若关于x的不等式2cos(2sinx)+a2x2≤af(x)在(﹣∞,+∞)上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着新高考改革的不断深入,高中学生生涯规划越来越受到社会的关注.一些高中已经开始尝试开设学生生涯规划选修课程,并取得了一定的成果.如表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.
成绩优秀 | 成绩不够优秀 | 总计 | |
选修生涯规划课 | 15 | 10 | 25 |
不选修生涯规划课 | 6 | 19 | 25 |
总计 | 21 | 29 | 50 |
(1)根据列联表运用独立性检验的思想方法能否有99%的把握认为“学生的成绩是否优秀与选修生涯规划课有关”,并说明理由;
(2)现用分层抽样的方法在选修生涯规划课的成绩优秀和成绩不够优秀的学生中随机抽取5名学生作为代表,从5名学生代表中再任选2名学生继续调查,求这2名学生成绩至少有1人优秀的概率.
参考附表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
参考公式
,其中n=a+b+c+d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,已知方程
(
为常数)在
上恰有三个根,分别为
,下述四个结论:
①当
时,
的取值范围是
;
②当
时,
在
上恰有2个极小值点和1个极大值点;
③当
时,
在
上单调递增;
④当
时,
的取值范围为
,且![]()
其中正确的结论个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
(
)上的两个动点
和
,焦点为F.线段AB的中点为
,且A,B两点到抛物线的焦点F的距离之和为8.
![]()
(1)求抛物线的标准方程;
(2)若线段AB的垂直平分线与x轴交于点C,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程与曲线
的直角坐标方程;
(2)设
为曲线
上位于第一,二象限的两个动点,且
,射线
交曲线
分别于
,求
面积的最小值,并求此时四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足:a1=1,且当n∈N*时,an3+an2(1﹣an+1)+1=an+1.
(1)求a2,a3的值;
(2)比较an与an+1的大小,并证明你的结论.
(3)若bn=(1
)
,其中n∈N*,证明:0<b1+b2+……+bn<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.
(1)完成下列
列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;
生二孩 | 不生二孩 | 合计 | |
头胎为女孩 | 60 | ||
头胎为男孩 | |||
合计 | 200 |
(2)在抽取的200户家庭的样本中,按照分层抽样的方法在生二孩的家庭中抽取了7户,进一步了解情况,在抽取的7户中再随机抽取4户,求抽到的头胎是女孩的家庭户数
的分布列及数学期望.
附:
| 0.15 | 0.05 | 0.01 | 0.001 |
| 2.072 | 3.841 | 6.635 | 10.828 |
(其中
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com