精英家教网 > 高中数学 > 题目详情
已知f(x)=loga(x+1),g(x)=loga(x-1)(a>0,a≠1).设h(x)=f(x)-g(x)
(1)求函数h(x)的定义域;
(2)判断函数h(x)的奇偶性,并予以证明.
(1)h(x)=f(x)-g(x)=loga(x+1)-loga(x-1)=loga
(1+x)
(1-x)
,则有
1+x
1-x
>0

即(x+1)(x-1)<0,则-1<x<1,故h(x)的定义域为{x|-1<x<1}
(2)h(-x)=loga
(1-x)
(1+x)
=loga(
1+x
1-x
)
-1
=-loga
(1+x)
(1-x)
=-h(x)
,故h(x)为奇函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案