精英家教网 > 高中数学 > 题目详情
7.若sinθ+cosθ=$\frac{1}{5}$,θ∈[0,π],则sinθ=$\frac{4}{5}$,cos2θ=-$\frac{7}{25}$.

分析 由条件利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,即可得解.

解答 解:∵sinθ+cosθ=$\frac{1}{5}$,sinθ=$\frac{1}{5}$-cosθ,
∵θ∈[0,π],
∴sinθ>0,cosθ<0,
∵sin2θ+cos2θ=1,
∴($\frac{1}{5}$-cosθ)2+cos2θ=1,解得:25cos2θ-5cosθ-12=0,解得:cosθ=-$\frac{3}{5}$,或$\frac{4}{5}$(舍去).
∴sinθ=$\frac{4}{5}$,cos2θ=1-2sin2θ=-$\frac{7}{25}$.
故答案为:$\frac{4}{5}$,-$\frac{7}{25}$.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=|lnx|的单调递减区间是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知一个圆锥的底面半径为4,高为6,在其中有一个半径为x的内接圆柱.
(Ⅰ)求圆柱的侧面积;
(Ⅱ)x为何值时,圆柱的侧面积最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若∠APB=∠BPC=∠CPA=60°,则直线PA与平面PBC所成角的余弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若f(1+x)=x2,则f(x)=(x-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知cos(α-$\frac{π}{6}$)=$\frac{{\sqrt{2}}}{2}$,则sin(2α+$\frac{π}{6}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a,b∈[-1,1],则函数f(x)=ax+b在区间(1,2)上存在一个零点的概率为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若α∈(0,2π),且tanα>cotα>cosα>sinα,则α的取值范围是(  )
A.($\frac{π}{4}$,$\frac{π}{2}$)B.($\frac{3π}{4}$,π)C.($\frac{5π}{4}$,$\frac{3π}{2}$)D.($\frac{7π}{4}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow a=(2,1),\overrightarrow b=(3,x)(x<0)$,若$(2\overrightarrow a-\overrightarrow b)⊥\overrightarrow b$,则x=-1.

查看答案和解析>>

同步练习册答案