精英家教网 > 高中数学 > 题目详情

设函数f(x)=lg(4-x)的定义域为集合A,函数 数学公式的定义域为集合B.求:(1)A,B; (2)A∩B,A∪B.

解:(1)要使函数f(x)=lg(4-x)有意义,则须4-x>0,∴x<4
即A={x|x<4}
要使函数 有意义,则须x2-2x-3≥0
∴x≥3,或x≤-1即B={x|x≥3,或x≤-1},
(2)A∩B={x|x<4}∩{x|x≥3,或x≤-1}={x|x≤-1或3≤x<4},
A∪B={x|x<4}∪{x|x≥3,或x≤-1}=R
分析:(1)根据对数的真数大于0,可求出集合A,根据偶次根式的被开方数大于等于0,可求出集合B;
(2)直接根据集合交集的定义和并集的定义进行求解即可.
点评:本题主要考查了对数函数的定义域,以及集合的运算,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
lg|x|,(x<0)
2x-1,(x≥0)
,若f(x0)>0则x0取值范围是(  )
A、(-∞,-1)∪(1,+∞)
B、(-∞,-1)∪(0,+∞)
C、(-1,0)∪(0,1)
D、(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(x2+ax-a-1),给出下述命题:①f(x)有最小值;②当a=0时,f(x)的值域为R;③若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是a≥-4.则其中正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

24、关于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)当m=1时,解此不等式;
(Ⅱ)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(x2+ax-a),若f(x)的值域为R,则a的取值范围是
(-∞,-4]∪[0+∞)
(-∞,-4]∪[0+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下列命题:
①设a,b为正实数,若a2-b2=1,则a-b<1;
②△ABC若acosA=bcosB,则△ABC是等腰三角形;
③数列{n(n+4)(
2
3
n中的最大项是第4项;
④设函数f(x)=
lg|x-1|,x≠1
0,x=1
则关于x的方程f2(x)+2f(x)=0有4个解;
⑤若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中的真命题有
①③
①③
.(写出所有真命题的编号).

查看答案和解析>>

同步练习册答案