精英家教网 > 高中数学 > 题目详情
函数f(x)=2x2-mx+2当x∈[-2,+∞)时是增函数,则m的取值范围是(  )
A.(-∞,+∞)B.[8,+∞) C.(-∞,-8]D.(-∞,8]
C

试题分析:函数f(x)=2x2-mx+2的对称轴是,由于函数f(x)在[-2,+∞)上是增函数,则,解得,则m的取值范围是(-∞,-8]。故选C。
点评:本题的函数是二次函数,其对称轴两边的单调性不一致,由于此函数的开口向上,故对称轴左边为减函数,右边为增函数。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

是定义在上的减函数,满足.
(1)求证:
(2)若,解不等式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,讨论函数的单调性:
(2)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”。试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数满足对任意实数,都有成立,则实数的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数互为反函数,且函数与函数也互为反函数,若=(    )
A.0B.1C.-2010 D.-2009

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)求当时,函数的表达式;
(2)作出函数的图象,并指出其单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数等于                处取得极小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ) 求函数在点处的切线方程;
(Ⅱ) 若函数在区间上均为增函数,求的取值范围;
(Ⅲ) 若方程有唯一解,试求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=.
(1)若f(x)=2,求x的值;
(2)判断x>0时,f(x)的单调性;
(3)若恒成立,求m的取值范围。

查看答案和解析>>

同步练习册答案