精英家教网 > 高中数学 > 题目详情
4.F1、F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点,Q是椭圆上任一点,过一焦点引∠F1QF2的外角平分线的垂线,则垂足M的轨迹为(  )
A.B.椭圆C.双曲线D.抛物线

分析 根据题意,延长F1M,与F2MQ的延长线交于B点,连接MO.根据等腰三角形“三线合一”和三角形中位线定理,结合椭圆的定义证出OM的长恰好等于椭圆的长半轴a,得动点M的轨迹方程为x2+y2=a2,由此可得本题答案.

解答 解:如图所示,延长F1M,与F2MQ的延长线交于B点,连接MO,
∵MQ是∠F1QB的平分线,且QM⊥BF1
∴△F1QB中,|QF1|=|BQ|且Q为BF1的中点
由三角形中位线定理,得|OM|=$\frac{1}{2}$|BF2|=$\frac{1}{2}$(|BQ|+|QF2|)
∵由椭圆的定义,得|QF1|+|QF2|=2a,(2a是椭圆的长轴)
可得|BQ|+|QF2|=2a,
∴|OM=a,可得动点M的轨迹方程为x2+y2=a2
为以原点为圆心半径为a的圆
故选:A.

点评 本题在椭圆中求动点Q的轨迹,着重考查了椭圆的定义、等腰三角形的判定和三角形中位线定理等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在命题“若|m|>|n|,则m2>n2”及该命题的逆命题、否命题、逆否命题中,真命题的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知A,B,C是球O的球面上三点,且$AB=AC=3,BC=3\sqrt{3},D$为该球面上的动点,球心O到平面ABC的距离为球半径的一半,则三棱锥D-ABC体积的最大值为$\frac{27}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于P、Q两点,F2为右焦点,若△PQF2为等边三角形,则椭圆的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.己知命题p:“a>b”是“2a>2b”的充要条件;q:?x∈R,ex<lnx,则(  )
A.¬p∨q为真命题B.p∧¬q为假命题C.p∧q为真命题D.p∨q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线方程为y2=8x,直线l过点P(2,4)且与抛物线只有一个公共点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.学校举办了一次田径运动会,某班有8人参赛,后有举办了一次球类运动会,这个班有12人参赛,两次运动会都参赛的有3人,两次运动会中,这个班共有多少名同学参赛?(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数2-3i的虚部为(  )
A.3B.3iC.-3D.-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数$\frac{2i}{1-i}+2$的虚部是(  )
A.-1B.1C.-iD.i

查看答案和解析>>

同步练习册答案