精英家教网 > 高中数学 > 题目详情
16.学校举办了一次田径运动会,某班有8人参赛,后有举办了一次球类运动会,这个班有12人参赛,两次运动会都参赛的有3人,两次运动会中,这个班共有多少名同学参赛?(  )
A.17B.18C.19D.20

分析 设A为田径运动会参赛的学生的集合,B为球类运动会参赛的学生的集合,那么A∩B就是两次运动会都参赛的学生的集合,card(A),card(B),card(A∩B)是已知的,于是可以根据上面的公式求出card(A∪B).

解答 解:设A={x|x是参加田径运动会比赛的学生},B={x|x是参加球类运动会比赛的学生},
A∩B={x|x是两次运动会都参加比赛的学生},
A∪B={x|x是参加所有比赛的学生}.
因此card(A∪B)=card(A)+card(B)-card(A∩B)=8+12-3=17.
故两次运动会中,这个班共有17名同学参赛.
故选:A

点评 本题考查集合中元素个数的求法,是中档题,解题时要认真审题,注意公式card(A∪B)=card(A)+card(B)-card(A∩B)的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设复数z满足z(1+i)=|$\sqrt{3}$-i|(i是虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图甲,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AD=2,AB=BC=1,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到△A1BE的位置,如图乙
(1)证明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE,求点B与平面A1CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.F1、F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点,Q是椭圆上任一点,过一焦点引∠F1QF2的外角平分线的垂线,则垂足M的轨迹为(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{2}{{{3^x}+1}}+a(a∈R)$为奇函数,
(1)求a的值;
(2)当0≤x≤1时,关于x的方程f(x)+1=t有解,求实数t的取值范围;
(3)解关于x的不等式f(x2-mx)≥f(2x-2m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在菱形ABCD中,AB=2,∠ABC=60°,BD∩AC=O,现将其沿菱形对角线BD折起得空间四边形EBCD,使EC=$\sqrt{2}$.
(Ⅰ)求证:EO⊥CD.
(Ⅱ)求点O到平面EDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线2x+y-2=0与直线4x+my+6=0平行,则它们之间的距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知偶函数f(x)在(0,+∞)上递减,已知a=0.2${\;}^{\sqrt{2}}$,b=log${\;}_{\sqrt{2}}$0.2,c=$\sqrt{2}$0.2,则f(a),f(b),f(c)  大小为(  )
A.f(a)>f(b)>f(c)B.f(a)>f(c)>f(b)C.f(b)>f(a)>f(c)D.f(c)>f(a)>f(b)

查看答案和解析>>

同步练习册答案