分析 (Ⅰ)证明:EO⊥平面BCD,即可证明EO⊥CD.
(Ⅱ)利用等体积方法,求点O到平面EDC的距离.
解答 (Ⅰ)证明:由题意,EO=OC=1,EC=$\sqrt{2}$,
∴EO2+OC2=EC2,∴EO⊥OC,
∵EO⊥BD,OC∩BD=O,
∴EO⊥平面BCD,
∵CD?平面BCD,
∴EO⊥CD.
(Ⅱ)解:△EDC中,ED=DC=2,EC=$\sqrt{2}$,S△EDC=$\frac{1}{2}×\sqrt{2}×\sqrt{4-\frac{1}{2}}$=$\sqrt{7}$,
设点O到平面EDC的距离为h,则由等体积可得$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×1=\frac{1}{3}×\sqrt{7}h$,
∴h=$\frac{\sqrt{21}}{14}$.
点评 本题考查线面垂直的判定与性质,考查等体积方法求点到平面的距离,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ¬p∨q为真命题 | B. | p∧¬q为假命题 | C. | p∧q为真命题 | D. | p∨q为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{lnπ}{π},0}]$ | B. | [-πlnπ,0] | C. | $[{-\frac{1}{e},\frac{lnπ}{π}}]$ | D. | $[{-\frac{e}{2},-\frac{1}{π}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$钱 | B. | $\frac{4}{3}$钱 | C. | $\frac{5}{6}$钱 | D. | $\frac{3}{2}$钱 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com