分析 (1)由an+1=2an+2n,两边同除以2n+1可得:$\frac{{a}_{n+1}}{{2}^{n+1}}-\frac{{a}_{n}}{{2}^{n}}=\frac{1}{2}$;
(2)根据等差数列的通项公式即可得出.
解答 (1)证明:∵an+1=2an+2n,
∴$\frac{{a}_{n+1}}{{2}^{n+1}}-\frac{{a}_{n}}{{2}^{n}}=\frac{1}{2}$,
∴数列{$\frac{{a}_{n}}{{2}^{n}}$}成等差数列,首项为$\frac{1}{2}$,公差为$\frac{1}{2}$.
(2)解:根据(1)可得:${a}_{n}=\frac{1}{2}+\frac{1}{2}(n-1)$=$\frac{n}{2}$.
点评 本题考查了等差数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x<2} | B. | {x|-2≤x<4} | C. | {x|-1<x<4} | D. | {x|-4<x≤4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5+12i | B. | -5-12i | C. | -13+12i | D. | -13-12i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,7) | B. | [3,7] | C. | (3,7] | D. | [3,7) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p是假命题 | B. | q是真命题 | C. | p∧(¬q)是真命题 | D. | (¬p)∧q是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>1} | B. | {x|x≤-1} | C. | {x|x>1或x<-1} | D. | {x|-1≤x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com