精英家教网 > 高中数学 > 题目详情
已知命题p:|1-
x-1
3
|≤2,q:x2-2x+1-m2≤0(m>0).
(1)求¬p;
(2)若¬p是¬q的必要不充分条件,求实数m的取值范围.
考点:命题的否定,必要条件、充分条件与充要条件的判断
专题:函数的性质及应用
分析:(1)解出关于p的表达式从而求出¬p;(2)根据¬p是¬q的必要不充分条件,从而得到答案.
解答: 解:(1)由P:|1-
x-1
3
|≤2⇒-2≤x≤10,
∴¬P:x>10或x<-2;
(2)由q可得(x-1)2≤m2(m>0),
∴1-m≤x≤1+m,
∴¬p:x>10或x<-2,¬q:x>1+m或x<1-m,
∵¬p是¬q的必要不充分条件,
∴¬p?¬q,
1+m≥10
1-m≤-2
,∴m≥9.
点评:本题考查了充分必要条件,考查了考查了命题之间的关系,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,且当x∈(0,1]时,f(x)=loga(x+1),a>1.
(1)求函数f(x)的解析式;
(2)解关于x的不等式f(x)>f(1-2x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+2ax+b,且f(1)=
5
2
,f(2)=
17
4

(1)求a,b;
(2)判断函数的单调性,并用定义给出证明;
(3)若关于x的不等式mf(x)≤2-x在(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px (p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在与直线OA(O为坐标原点)垂直的直线l,使得直线l与抛物线C有公共点,且点A到l的距离等于3
5
?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=
a•3x+4-a
4(3x-1)
是奇函数,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(lg5)2+lg2×lg50=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简lg0.01+ln
e
-2log23=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:y=kx-1与直线l2:2x-y-2=0;
(1)当k为何值时,l1∥l2
(2)当k为何值时,l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax+2,x∈[-5,5]
(1)若y=f(x)在区间[-5,5]上是单调函数,求实数a的取值范围;
(2)求函数f(x)的最小值g(a).

查看答案和解析>>

同步练习册答案