精英家教网 > 高中数学 > 题目详情
9.如图,四棱锥P-ABCD中,底面ABCD的边长为4的菱形,PD=PB=4,∠BAD=60°,E为PA中点.
(1)求证:BD⊥平面PAC;
(2)若PA=PC,求三棱锥E-ABC的体积.

分析 (1)设AC∩BD=O,连结PO,推导出AC⊥BD,PO⊥BD,由此能证明BD⊥平面PAC.
(2)推导出PO⊥平面ABCD,求出S△ABC和PO,取AO中点F,连结EF,EF是△PAO中位线,从而EF⊥平面ABC,由此能求出三棱锥E-ABC的体积.

解答 证明:(1)设AC∩BD=O,连结PO
∵四棱锥P-ABCD中,底面ABCD的边长为4的菱形,
∴AC⊥BD,
∵PD=PB=4,∴PO⊥BD,
∵AC∩PO=O,∴BD⊥平面PAC.
解:(2)∵PA=PC,∴PO⊥AC,
又PO⊥BD,AC∩BD=O,
∴PO⊥平面ABCD,
∵底面ABCD的边长为4的菱形,PD=PB=4,∠BAD=60°,
∴BO=$\frac{1}{2}BD=\frac{1}{2}AB=2$,AC=2AO=2$\sqrt{A{B}^{2}-B{O}^{2}}$=2$\sqrt{16-4}$=4$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}×AC×BO=\frac{1}{2}×4\sqrt{3}×2$=$4\sqrt{3}$,
PO=$\sqrt{P{B}^{2}-B{O}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
取AO中点F,连结EF,
∵E是PA中点,∴EF是△PAO中位线,
∴EF∥PO,且EF=$\frac{1}{2}PO$=$\sqrt{3}$,
∴三棱锥E-ABC的体积VE-ABC=$\frac{1}{3}×{S}_{△ABC}×EF$=$\frac{1}{3}×4\sqrt{3}×\sqrt{3}$=4.

点评 本题考查线面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在等比数列{an}中,如果a5和a9是一元二次方程x2+7x+9=0的两个根,则a4•a7•a10的值为(  )
A.-27B.27C.±27D.±81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知曲线l$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)与曲线C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,⊙O是以AB为直径的圆,点C在圆上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延长线与AB的延长线交于点E.若EB=6,EC=6$\sqrt{2}$,则BC的长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2${\;}^{sin(2x-\frac{π}{4})}$.
(1)这个函数是否为周期函数?为什么?
(2)求它的单调增区间和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,有关系:1+cos2A+sinB•sinC=cos2B+cos2C,则角A的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一道数学竞赛题,甲、乙、丙单独解出此题的概率分别为$\frac{1}{a}$、$\frac{1}{b}$、$\frac{1}{c}$,其中a、b、c都是小于10的正整数,现甲、乙、丙同时独立解答此题,若三人中恰有一人解出此题的概率为$\frac{7}{15}$,则甲、乙、丙三人都未解出此题的概率为$\frac{4}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如图规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)标5,点(-1,1)处标6,点(0,1)处标7,以此类推,经归纳可知标注2013的格点的坐标为(  )
A.(11,22)B.(12,23)C.(23,23)D.(23,22)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知Sn是数列{an}的前n项和,a1=2,$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=$\sqrt{2}$(n∈N*,n≥2)
(1)求Sn的表达式;
(2)求数列{an}的通项公式;
(3)若bn=$\frac{{a}_{n}{a}_{n+1}}{4}$(n∈N*),是否存在正整数n使得$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$>2成立?如果存在,请求出n的最小值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案