精英家教网 > 高中数学 > 题目详情
2.已知集合A={0,1,2,3,4},B={x|x2-2x>0},则A∩B=(  )
A.(2,4]B.[2,4]C.{0,3,4}D.{3,4}

分析 求出B中不等式的解集确定出B,找出A与B的交集即可.

解答 解:由B中不等式变形得:x(x-2)>0,
解得:x<0或x>2,即B=(-∞,0)∪(2,+∞),
∵A={0,1,2,3,4},
∴A∩B={3,4},
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在几何体中,四边形ABCD为菱形,对角线AC与BD的交点为O,四边形DCEF为梯形,EF∥DC,FD=FB.
(Ⅰ)若DC=2EF,求证:OE∥平面ADF;
(Ⅱ)求证:平面AFC⊥平面ABCD;
(Ⅲ)若AB=FB=2,AF=3,∠BCD=60°,求AF与平面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正项数列{an}的前n项和为Sn,且$\sqrt{{S}_{n}}$是1与an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和,证明:$\frac{2}{3}$<Tn<1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设复数z满足z(1+i)=i(i为虚数单位),则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC+ccosB=3acosB,b=2,且△ABC的面积为$\frac{3\sqrt{2}}{2}$,则a+c=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A,B,C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A,B,C三种分期付款销售中,该经销商每销售此品牌汽车1辆所获得的利润分别是1万元,2万元,3万元.以这100 位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.
(Ⅰ)求采用上述分期付款方式销售此品牌汽车1辆,该汽车经销商从中所获得的利润不大于2万元的概率;
(Ⅱ)求采用上述分期付款方式销售此品牌汽车1辆,该汽车经销商从中所获得的利润的平均值;
(Ⅲ)根据某税收规定,该汽车经销商每月(按30天计)上交税收的标准如表:
月利润(单位:万元)在(0,100]内的部分超过100且不超过150的部分超过150的部分
税率1%2%4%
若该经销商按上述分期付款方式每天平均销售此品牌汽车3辆,估计其月纯收入(纯收入=总利润-上交税款)的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$|{\overrightarrow{e_1}}|=|{\overrightarrow{e_2}}|=1$,$cos<\overrightarrow{e_1},\overrightarrow{e_2}>=-\frac{1}{5}$,且$\overrightarrow a=2\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=\overrightarrow{e_1}+3\overrightarrow{e_2}$,则$\overrightarrow a•\overrightarrow b$=(  )
A.2B.-2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知n∈N*,数列{dn}满足${d_n}=\frac{{3+{{({-1})}^n}}}{2}$,数列{an}满足an=d1+d2+d3+…+d2n;又在数列{bn}中b1=2,且对?m,n∈N*,$b_n^m=b_m^n$.
( I)求数列{an}和{bn}的通项公式;
( II)将数列{bn}中的第a1项、第a2项、第a3项、…、第an项删去后,剩余的项按从小到大的顺序排列成新的数列{cn},求数列{cn}的前2016项的和T2016

查看答案和解析>>

同步练习册答案