精英家教网 > 高中数学 > 题目详情

【题目】已知函数为常数).

1)当时,若方程有实根,求的最小值;

2)设,若在区间上是单调函数,求的取值范围.

【答案】(1) 最小值为0. (2)

【解析】

1)当时,利用导数求得的最小值为,所以,故的最小值为.

2)首先求得的解析式,利用二次求导的方法,结合在区间上是单调函数,将分成两种情况进行分类讨论,由此求得的取值范围.

1)当时,

.

时,为减函数;

时,为增函数.

.

,得

,∴.的最小值为0.

2)∵,∴.

,则

可知上为减函数.

从而.

①当,即时,在区间上为增函数,

,∴在区间上恒成立,即在区间上恒成立.

在区间上是减函数,故满足题意;

②当,即时,设函数的唯一零点为

上单调递增,在上单调递减.

又∵,∴,∴上单调递增,

,∴上递减,

这与在区间上是单调函数矛盾.

不合题意.

综合①②得:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥底面是直角梯形,点E是棱PC的中点,底面ABCD.

(1)判断BE与平面PAD是否平行,证明你的结论;

(2)证明:平面

(3)求三棱锥的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆, 过点的直线与椭圆交于MN两点(M点在N点的上方),与轴交于点E.

(1)当时,求点MN的坐标;

(2)当时,设,求证:为定值,并求出该值;

(3)当时,点D和点F关于坐标原点对称,若△MNF的内切圆面积等于,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为,若距离为1km时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.

(1)f(x)的表达式

(2)宿舍应建在离工厂多远处,可使总费用f(x)最小并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为为参数),曲线上的点对应的参数.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.射线与曲线交于点

1)求曲线的直角坐标方程;

2)若点在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时

(Ⅰ)求椭圆的方程;

(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}满足:a3+a820,且a5a2a14的等比中项.

1)求数列{an}的通项公式;

2)设数列{bn}满足,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S-ABCD中,四边形ABCD菱形,,平面平面 ABCD .EF 分别是线段 SCAB 上的一点, .

(1)求证:平面SAD;

(2)求平面DEF与平面SBC所成锐二面角的正弦值.

查看答案和解析>>

同步练习册答案