【题目】在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
;直线
的参数方程为
(
为参数),直线
与曲线
分别交于
,
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若点
的极坐标为
,
,求
的值.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,顶点
在底面
上的射影
在棱
上,
,
,
,
为
的中点。
![]()
(Ⅰ)求证:
(Ⅱ)求二面角
的余弦值;
(Ⅲ)已知
是平面
内一点,点
为
中点,且
平面
,求线段
的长。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆O交x轴于点F1,F2,交y轴于点B1,B2.以B1,B2为顶点,F1,F2分别为左、右焦点的椭圆E,恰好经过点
.
(1)求椭圆E的标准方程;
(2)设经过点(﹣2,0)的直线l与椭圆E交于M,N两点,求△F2MN面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=4x的焦点为F,过点F且斜率为1的直线与抛物线C交于A、B两点,若在以线段AB为直径的圆上存在两点M、N,在直线
:x+y+a=0上存在一点Q,使得∠MQN=90°,则实数a的取值范围为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂对一批新产品的长度(单位:
)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )
![]()
A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
.
(1)写出直线
的普通方程及曲线
的直角坐标方程;
(2)已知点
,点
,直线
过点
且曲线
相交于
,
两点,设线段
的中点为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了
组数据作为研究对象,如下表所示(
(吨)为该商品进货量,
(天)为销售天数):
| 2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 |
| 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根据上表提供的数据,求出
关于
的线性回归方程
;
(Ⅱ)在该商品进货量
(吨)不超过
(吨)的前提下任取两个值,求该商品进货量
(吨)恰有一个值不超过
(吨)的概率.
参考公式和数据:
,
.![]()
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
1(a>b>0)的离心率为
,以椭圆
的右顶点与下顶点为直径端点的圆的面积为
.
(1)求椭圆
的标准方程;
(2)已知点
,动直线
与椭圆交于
轴同一侧的
两点,且满足
,试问直线
是否过定点,若过定点,求出此定点坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从使用A和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如图.
![]()
(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数;
(2)根据以上抽样调查数据,回答以下问题:
(ⅰ)为了解如何降低各商家的送餐时间,我们先从这100家商家里选出平均送达时间不超过20分钟的商家,然后再从中随机挑选两家进行跟踪研究,求恰好所抽中的商家均为使用B款软件的概率.
(ⅱ)如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com