【题目】在平面直角坐标系中,圆O交x轴于点F1,F2,交y轴于点B1,B2.以B1,B2为顶点,F1,F2分别为左、右焦点的椭圆E,恰好经过点
.
(1)求椭圆E的标准方程;
(2)设经过点(﹣2,0)的直线l与椭圆E交于M,N两点,求△F2MN面积的最大值.
【答案】(1)
.(2)最大值
.
【解析】
(1)根据题意分析椭圆中基本量的关系,再代入
求解即可.
(2)设直线
,再联立直线与椭圆的方程,代入韦达定理求得弦长
的解析式,再求解
到
的距离,进而表达出面积的表达式,换元后利用二次不等式的方法求最值即可.
(1)由已知可得,椭圆E的焦点在x轴上.
设椭圆E的标准方程为
,焦距为2c,则b=c,
∴a2=b2+c2=2b2,∴椭圆E的标准方程为
.
又椭圆E过点
,∴
,解得b2=1.
∴椭圆E的标准方程为
.
(2)由于点(﹣2,0)在椭圆E外,所以直线l的斜率存在.
设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).
由
消去y得,(1+2k2)x2+8k2x+8k2﹣2=0.
由△>0得
,从而
,
∴
.
∵点F2(1,0)到直线l的距离
,
∴△F2MN的面积为
.
令1+2k2=t,则t∈[1,2),
∴
,
当
即
时,S有最大值,
,此时
.
所以,当直线l的斜率为
时,可使△F2MN的面积最大,其最大值
.
科目:高中数学 来源: 题型:
【题目】凤鸣山中学的高中女生体重
(单位:kg)与身高
(单位:cm)具有线性相关关系,根据一组样本数据
(
),用最小二乘法近似得到回归直线方程为
,则下列结论中不正确的是( )
A.
与
具有正线性相关关系
B.回归直线过样本的中心点![]()
C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg
D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左顶点为
,右焦点为
,过
作垂直于
轴的直线交该椭圆于
,
两点,直线
的斜率为
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若
的外接圆在
处的切线与椭圆交另一点于
,且
的面积为
,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
如图,已知四棱锥
,底面
为菱形,
,
,
平面
,
分别是
的中点。
(1)证明:
;
(2)若
为
上的动点,
与平面
所成最大角
的正切值为
,求二面角
的余弦值。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=
|PD|,当P在圆上运动时,求点M的轨迹C的方程。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四面体ABCD中AB⊥面BCD,BC⊥DC,BE⊥AD垂足为E,F为CD中点,AB=BD=2,CD=1.
![]()
(1)求证:AC∥面BEF;
(2)求点B到面ACD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
;直线
的参数方程为
(
为参数),直线
与曲线
分别交于
,
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若点
的极坐标为
,
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com