精英家教网 > 高中数学 > 题目详情

【题目】凤鸣山中学的高中女生体重 (单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是(

A.具有正线性相关关系

B.回归直线过样本的中心点

C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg

D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.

【答案】D

【解析】

根据回归直线方程可以判断具有正线性相关关系,回归直线过样本的中心点,该中学某高中女生身高增加1cm,则其体重约增加0.85kg,该中学某高中女生身高为160cm,只能估计其体重,不能得出体重一定是多少.

根据回归直线方程,但看函数图象是单调递增,可以判断具有正线性相关关系,所以A选项说法正确;

回归直线过样本的中心点,所以B选项说法正确;

根据斜率得该中学某高中女生身高增加1cm,则其体重约增加0.85kg,所以C选项说法正确;

该中学某高中女生身高为160cm,根据回归直线方程只能估计其体重,D选项说“可断定其体重必为50.29kg”,这种说法错误.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃)对某种鸡的时段产蛋量(单位:)的影响.为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

17.4

82.3

3.6

140

9.7

2935.1

35

其中.

1)根据散点图判断,哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)

2)若用作为回归方程模型,根据表中数据,求出关于的回归方程;

3)当时段控制温度为28℃时,鸡的时段产蛋量的预报值(精确到0.1)是多少?

附:①对于一组具有线性相关系的数据,其回归直线的斜率和截距的最小二乘估计分别为.

②参考值.

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M20),圆Cx2+y2+4x=0.

1)求直线3x+4y+1=0与圆Cx2+y2+4x=0相交所得的弦长|MN|;

2)过点M的直线与圆C交于AB两个不同的点,求弦AB的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从柳州铁一中高二男生中随机选取100名学生,将他们的体重(单位:)数据绘制成频率分布直方图,如图所示.

1)估计该校的100名同学体重的平均值和方差(同一组数据用该组区间的中点值代表);

2)若要从体重在内的两组男生中,用分层抽样的方法选取5人,再从这5人中随机抽取2人,求被抽取的两位同学来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线与直线平行,求实数的值;

(2)试讨论函数在区间上最大值;

(3)若时,函数恰有两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】孝感市某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中用分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:类(不参加课外阅读),类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如表:

男生

5

3

女生

3

3

1)求出表中的值;

2)根据表中的统计数据,完成下面的列联表,井判断是否有90%的把握认为“参加阅读与否”与性别有关;

男生

女生

总计

不参加课外阅读

参课外阅读

总计

3)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类女生人数,求X的数学期望.

附:.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,顶点在底面上的射影在棱上,的中点。

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值;

(Ⅲ)已知是平面内一点,点中点,且平面,求线段的长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆Ox轴于点F1F2,交y轴于点B1B2.以B1B2为顶点,F1F2分别为左、右焦点的椭圆E,恰好经过点

1)求椭圆E的标准方程;

2)设经过点(﹣20)的直线l与椭圆E交于MN两点,求△F2MN面积的最大值.

查看答案和解析>>

同步练习册答案