精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数处的切线与直线平行,求实数的值;

(2)试讨论函数在区间上最大值;

(3)若时,函数恰有两个零点,求证:.

【答案】(1);(2) 时,,当时,;(3)见解析.

【解析】

试题分析:(1)求函数的导数,由求之即可;(2) ,分当分别讨论函数的单调性,求其最值即可;(3)可得,即,设,则,即,故,用作差比较法证明即可.

试题解析: (1)由

由于函数处的切线与直线平行,

,解得.

(2),由时,时,

所以时,上单调递减,

上的最大值为

上单调递增,在上单调递减,

上的最大值为

(3)若时,恰有两个零点

,设

,记函数,因

递增,

,故成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中 是省外游客,其余是省内游客.在省外游客中有 持金卡,在省内游客中有 持银卡.
(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(Ⅱ)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x1x2.

求证:tan x1+tan x2>2tan.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E: (a>b>0)的左、右焦点F1、F2 , 其离心率e= ,且点F2到直线 =1的距离为
(1)求椭圆E的方程;
(2)设点P(x0 , y0)是椭圆E上的一点(x0≥1),过点P作圆(x+1)2+y2=1的两条切线,切线与y轴交于A、B两点,求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线和椭圆有公共的焦点,且离心率为

)求双曲线的方程.

)经过点作直线交双曲线 两点,且的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列四个命题:
①垂直于同一条直线的两条直线平行;
②垂直于同一条直线的两个平面平行;
③垂直于同一平面的两个平面平行;
④垂直于同一平面的两条直线平行.
其中正确的命题有(填写所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数处的切线方程为,求的值;

(Ⅱ)讨论方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且f(﹣x﹣1)=f(x﹣1),当x∈[﹣1,0]时,f(x)=﹣x3 , 则关于x的方程f(x)=|cosπx|在[﹣ ]上的所有实数解之和为(
A.﹣7
B.﹣6
C.﹣3
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题恒成立;命题方程表示双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案