精英家教网 > 高中数学 > 题目详情

【题目】 已知实数满足方程,当)时,由此方程可以确定一个偶函数,则抛物线的焦点到点的轨迹上点的距离最大值为_________.

【答案】

【解析】由题设条件当0yb(bR)时,由此方程可以确定一个偶函数y=f(x),可知方程(x-a+1)2+(y-1)2=1,关于y轴成轴对称,故有-a+1=0,又由圆的几何特征及确定一个偶函数y=f(x)知,y的取值范围是[0,1],由此可以求出b的取值范围,由此点(a,b)的轨迹求知,再由抛物线的性质求得其焦点坐标为(0,-),最大距离可求

解答:解:由题意可得圆的方程一定关于y轴对称,故由-a+1=0,求得a=1
由圆的几何性质知,只有当y1时,才能保证此圆的方程确定的函数是一个偶函数,故0<b1
由此知点(a,b)的轨迹是一个线段,其横坐标是1,纵坐标属于(0,1]
又抛物线y=-x2故其焦点坐标为(0,-
由此可以判断出焦点F到点(a,b)的轨迹上点的距离最大距离是
故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x+2cos2x+m(0≤x≤ ).
(1)若函数f(x)的最大值为6,求常数m的值;
(2)若函数f(x)有两个零点x1和x2 , 求m的取值范围,并求x1和x2的值;
(3)在(1)的条件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),讨论函数g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知中心在原点,离心率为的椭圆的一个焦点为圆 的圆心.

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上一点,过作两条斜率之积为的直线 ,当直线 都与圆相切时,求的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,左焦点是.

(1)若左焦点与椭圆的短轴的两个端点是正三角形的三个顶点,点在椭圆上.求椭圆的方程;

(2)过原点且斜率为的直线与(1)中的椭圆交于不同的两点,设,求四边形的面积取得最大值时直线的方程;

(3)过左焦点的直线交椭圆两点,直线交直线于点,其中是常数,设 ,计算的值(用的代数式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且).

(1)求的通项公式;

(2)设 是数列的前项和,求正整数,使得对任意均有恒成立;

(3)设 是数列的前项和,若对任意均有恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,则EF和AB所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,正确的是( )

①两个平面同时垂直第三个平面,则这两个平面可能互相垂直

②方程 表示经过第一、二、三象限的直线

③若一个平面中有4个不共线的点到另一个平面的距离相等,则这两个平面平行

④方程可以表示经过两点的任意直线

A. ②③ B. ①④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为常数, 为自然对数的底数).

(Ⅰ)当时,讨论函数在区间上极值点的个数;

(Ⅱ)当 时,对任意的都有成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(3+x)+ln(3﹣x).
(Ⅰ)求函数y=f(x)的定义域;
(Ⅱ)判断函数y=f(x)的奇偶性;
(Ⅲ)若f(2m﹣1)<f(m),求m的取值范围.

查看答案和解析>>

同步练习册答案