【题目】已知椭圆
:
,左焦点是
.
(1)若左焦点
与椭圆
的短轴的两个端点是正三角形的三个顶点,点
在椭圆
上.求椭圆
的方程;
(2)过原点且斜率为
的直线
与(1)中的椭圆
交于不同的两点
,设
,求四边形
的面积取得最大值时直线
的方程;
(3)过左焦点
的直线
交椭圆
于
两点,直线
交直线
于点
,其中
是常数,设
,
,计算
的值(用
的代数式表示).
【答案】(1)
(2)
(3)![]()
【解析】试题分析:(1)利用已知条件列方程组求出
的值,从而求出椭圆的标准方程; (2)设直线
的方程
,联立直线
和椭圆方程,求出
,分别求出点
到直线
的距离,求出四边形
的面积,利用基本不等式求出最大值得到
,再求出直线
的方程; (3)设直线
的方程为
,联立直线
和椭圆方程,求出两根之和,两根之积, 由向量共线求出
的表达式,代入化简,求出
的值.
试题解析:(1)
, 所以椭圆方程
(2)设直线
的方程![]()
联立
,可以计算
,
![]()
所以直线
的方程是
(3)设直线
的方程
交椭圆
于![]()
![]()
直线
交直线
于点
,根据题设
,
得到
,
,
得
,
![]()
点睛: 本题主要考查了求椭圆的方程, 四边形面积的计算, 以及求参数
的值, 属于中档题. 本题涉及的考点有椭圆标准方程,点到直线距离公式,基本不等式,向量共线定理等,考查学生的运算求解能力以及分析问题、解决问题的能力.
科目:高中数学 来源: 题型:
【题目】在正方体
中,
为棱
上一动点,
为底面
上一动点,
是
的中点,若点
都运动时,点
构成的点集是一个空间几何体,则这个几何体是
![]()
A. 棱柱 B. 棱台 C. 棱锥 D. 球的一部分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示没有命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A. 0.35 B. 0.25
C. 0,20 D. 0.15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
.
(1)若椭圆
的右焦点坐标为
,求
的值;
(2)由椭圆
上不同三点构成三角形称为椭圆的内接三角形.若以
为直角顶点的椭圆
的内接等腰直角三角形恰有三个,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
A.过平面外一点作这个平面的垂面有且只有一个
B.过直线外一点作这条直线的平行平面有且只有一个
C.过直线外一点作这条直线的垂线有且只有一条
D.过平面外的一条斜线作这个平面的垂面有且只有一个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,
都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列
.
(1)设数列
、
分别为等差、等比数列,若
,
,
,求
;
(2)设
的首项为1,各项为正整数,
,若新数列
是等差数列,求数列
的前
项和
;
(3)设
(
是不小于2的正整数),
,是否存在等差数列
,使得对任意的
,在
与
之间数列
的项数总是
?若存在,请给出一个满足题意的等差数列
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0≤φ≤
)的部分图象,其图象与y轴交于点(0,
)
(Ⅰ)求函数的解析式;
(Ⅱ)若
, 求
-
的值.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com