精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=lnx+x2-2ax+1.(a为常数).
(1)讨论函数f(x)的单调性;
(2)若存在x0∈(0,1],使得对任意的a∈(-2,0],不等式$2m{e^a}+f({x_0})>{a^2}+2a+4$(其中e为自然对数的底数)都成立,求实数m的取值范围.

分析 (1)求出函数的导函数,对二次函数中参数a进行分类讨论,判断函数的单调区间;
(2)根据(1),得出f(x0)的最大值,问题可转化为对任意的a∈(-2,0],不等式2mea(a+1)-a2+-4a-2>0都成立,构造函数h(a)=2mea(a+1)-a2+-4a-2,根据题意得出m的范围,由h(0)>0得m>1,且h(-2)≥0得m≤e2,利用导函数,对m进行区间内讨论,求出m的范围.

解答 解:(1)f(x)=lnx+x2-2ax+1,
f'(x)=$\frac{1}{x}$+2x-2a=$\frac{{2x}^{2}-2ax+1}{x}$,
令g(x)=2x2-2ax+1,
(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;
(ii)当0<a≤$\sqrt{2}$时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;
(iii)当a>$\sqrt{2}$时,x在( $\frac{a-\sqrt{{a}^{2}-2}}{2}$,$\frac{a+\sqrt{{a}^{2}-2}}{2}$)时,g(x)<0,函数f(x)单调递减;
在区间(0,$\frac{a-\sqrt{{a}^{2}-2}}{2}$)和( $\frac{a+\sqrt{{a}^{2}-2}}{2}$,+∞)时,g(x)>0,函数f(x)单调递增;
(2)由(1)知当a∈(-2,0],时,函数f(x)在区间(0,1]上单调递增,
所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2-2a,对任意的a∈(-2,0],
都存在x0∈(0,1],使得不等式a∈(-2,0],2mea(a+1)+f(x0)>a2+2a+4成立,
等价于对任意的a∈(-2,0],不等式2mea(a+1)-a2+-4a-2>0都成立,
记h(a)=2mea(a+1)-a2+-4a-2,由h(0)>0得m>1,且h(-2)≥0得m≤e2
h'(a)=2(a+2)(mea-1)=0,
∴a=-2或a=-lnm,
∵a∈(-2,0],
∴2(a+2)>0,
①当1<m<e2时,-lnm∈(-2,0),且a∈(-2,-lnm)时,h'(a)<0,
a∈(-lnm,0)时,h'(a)>0,所以h(a)最小值为h(-lnm)=lnm-(2-lnm)>0,
所以a∈(-2,-lnm)时,h(a)>0恒成立;
②当m=e2时,h'(a)=2(a+2)(ea+2-1),因为a∈(-2,0],所以h'(a)>0,
此时单调递增,且h(-2)=0,
所以a∈(-2,0],时,h(a)>0恒成立;
综上,m的取值范围是(1,e2].

点评 考查了导函数的应用和利用构造函数的方法,对存在问题进行转化,根据导函数解决实际问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设全集为R,A={x|x2-x≤0},$B=\{x|{(\frac{1}{2})^x}>1\}$,则A∩∁RB=(  )
A.B.{0}C.[0,1]D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线的中心在坐标原点,如果左焦点F与右顶点A以及虚轴上顶点B构成直角三角形,则其离心率为$\frac{{\sqrt{5}+1}}{2}$,称此双曲线为“黄金双曲线”.类比“黄金双曲线”可推知“黄金椭圆”的离心率为$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.能够把圆O:x2+y2=9的周长和面积同时分为相等的两部分的函数f(x)称为“亲和函数”,则下列函数:$f(x)={x^3}+x,f(x)=ln\frac{5+x}{5-x},f(x)=tan\frac{x}{5},f(x)={e^x}+{e^{-x}}$,其中是圆O:x2+y2=9的“亲和函数”的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若命题p的否命题为r,命题r的逆命题为s,p的逆命题为t,则s是t的(  )
A.逆否命题B.逆命题C.否命题D.原命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{i}{1-i}$(i是虚数单位)的实部是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大$\frac{21}{2}$,则该数列的项数是(  )
A.6B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线x=1,y=x将圆x2+y2=4分成四块,用5种不同的颜料涂色,要求共边的两块颜色互异,每块只涂一色,则不同的涂色方案共有260.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.有一种波,其波形为函数y=sin$({\frac{π}{2}x})$的图象,若在区间[0,t]上至少有2个波峰(图象的最高点),则正整数t的最小值是5.

查看答案和解析>>

同步练习册答案