分析 (Ⅰ)以B为原点,BA、BC、BB1分别为x轴,y轴,z轴,建立空间直角坐标系B-xyz,利用向量法能证明A1F⊥C1E.
(Ⅱ)VB1-EFB=$\frac{1}{3}$S△BEF•BB1=$\frac{a}{6}$m(a-m)≤$\frac{a3}{24}$,当m=$\frac{a}{2}$时,VB1-EFB取最大值,求出平面B1EF的一个法向量和平面BB1E的一个法向量,由此能求出二面角B-B1E-F的正切值.
解答
证明:(Ⅰ)如图,以B为原点,BA、BC、BB1分别为x轴,y轴,z轴,建立空间直角坐标系B-xyz
设AE=BF=m (0≤m≤a),则E(0,a-m,0),
C1(a,0,a),A1(0,a,a),
F(m,0,0),…(2分)
∴$\overrightarrow{A1F}$=(m,-a,-a),
$\overrightarrow{C1E}$=(-a,a-m,-a),…(4分)
∴$\overrightarrow{A1F}$•$\overrightarrow{C1E}$=-am-a2+am+a2=0,
∴A1F⊥C1E.…(6分)
解:(Ⅱ)∵BB1⊥平面EFB,∴VB1-EFB=$\frac{1}{3}$S△BEF•BB1=$\frac{a}{6}$m(a-m)≤$\frac{a3}{24}$,
当且仅当m=$\frac{a}{2}$时,VB1-EFB取最大值.…(8分)
此时,E(0,$\frac{a}{2}$,0),F($\frac{a}{2}$,0,0),B1(0,0,a)
$\overrightarrow{{B}_{1}E}$=(0,$\frac{a}{2}$,-a),$\overrightarrow{{B}_{1}F}$=($\frac{a}{2}$,0,-a)
设平面B1EF的一个法向量为$\overrightarrow{m}$=(x,y,z),
则有$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{B}_{1}E}=0}\\{\overrightarrow{m}•\overrightarrow{{B}_{1}F}=0}\end{array}\right.$,即$\left\{\begin{array}{l}\frac{a}{2}y-az=0\\ \frac{a}{2}x-az=0\end{array}$
令x=2,则y=2,z=1,得$\overrightarrow{m}$=(2,2,1),
取平面BB1E的一个法向量$\overrightarrow{n}$=(1,0,0),
则cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{3}$…(10分)
二面角B-B1E-F的正切值为$\frac{\sqrt{5}}{2}$.…(12分)
点评 本题考查异面直线垂直的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 64个 | B. | 72个 | C. | 84个 | D. | 96个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 患病 | 未患病 | 总计 | |
| 没服用药 | 22 | y | 60 |
| 服用药 | x | 50 | 60 |
| 总计 | 32 | t | 120 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com