精英家教网 > 高中数学 > 题目详情
19.如图所示是一个几何体的三视图,其中侧视图是一个边长为1的正三角形,俯视图是两个边长为1的正三角形拼成的菱形,则其体积为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

分析 由三视图可知:该几何体是由左右两个对称的三棱锥组成的.根据已知数据即可得出.

解答 解:由三视图可知:该几何体是由左右两个对称的三棱锥组成的.
该几何体的体积=2×$\frac{1}{2}×1×\frac{\sqrt{3}}{2}×\sqrt{3}$×$\frac{1}{3}$=$\frac{1}{2}$.
故选:C.

点评 本题考查了三视图的有关计算、三棱锥棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是(  )
A.607B.328C.253D.007

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a=-2${∫}_{0}^{π}$sin(x+$\frac{π}{3}$)dx,求二项式(x2+$\frac{a}{x}$)5的展开式中x的系数及展开式中各项系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y=$\frac{1}{8}$x2与双曲线$\frac{{y}^{2}}{{a}^{2}}$-x2=1(a>0)有共同的焦点F,则双曲线的渐近线方程为y=$±\sqrt{3}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在棱长为a的正方形OABC-O1A1B1C1中,点E,F分别是棱AB,BC上的动点,且AE=BF.
(Ⅰ)求证:A1F⊥C1E;
(Ⅱ)当三棱锥B1-EFB的体积取得最大值时,求二面角B-B1E-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某事业单位共公开招聘一名职员,从笔试成绩合格的6(编号分别为1-6)名应试者中通过面试选聘一名.甲、乙、丙、丁四人对入选者进行预测.甲:不可能是6号;乙:不是4号就是5号;丙:是1、2、3号中的一名;丁:不可能是1、2、3号.已知四人中只有一人预测正确,那么入选者是6号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$ 那么f[f(-$\frac{1}{2}$)]=$\frac{1}{2}$;若函数y=f(x)-k有且只有两个零点,则实数k的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=$\left\{\begin{array}{l}{1-{x}^{2}(x≤1)}\\{{x}^{2}-2x-2(x>1)}\end{array}\right.$,则f[$\frac{1}{f(2)}$]=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表数据:
单价x(元)34567
销量y(件)7872696863
由表中数据,求得线性回归直线方程为$\hat y$=-6x+$\hat a$.若在这些样本点中任取一点,则它在回归直线左下方的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案