精英家教网 > 高中数学 > 题目详情
9.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表数据:
单价x(元)34567
销量y(件)7872696863
由表中数据,求得线性回归直线方程为$\hat y$=-6x+$\hat a$.若在这些样本点中任取一点,则它在回归直线左下方的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 根据已知中数据点坐标,我们易求出这些数据的数据中心点坐标,进而求出回归直线方程,判断各个数据点与回归直线的位置关系后,求出所有基本事件的个数及满足条件两点恰好在回归直线下方的基本事件个数,代入古典概率公式,即可得到答案.

解答 解:$\overline{x}$=$\frac{1}{5}(3+4+5+6+7)=5$,
$\overline{y}$=$\frac{1}{5}(78+72+69+68+63)=70$,
∵线性回归直线方程为$\hat y$=-6x+$\hat a$.
∴70=-6×$5+\widehat{a}$,解得$\widehat{a}$=100,
∴线性回归直线方程为$\hat y$=-6x+100,
数据(3,78),(4,72),(5,69),(6,68),(7,63).
5个点中有3个点在直线的下侧,即(3,78),(4,72),(5,69).
则其这些样本点中任取1点,共有6种不同的取法,
故在这些样本点中任取一点,则它在回归直线左下方的概率为p=$\frac{3}{5}$.
故选:C.

点评 本题考查的知识是等可能性事件的概率及线性回归方程,求出回归直线方程,判断各数据点与回归直线的位置关系,并求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图所示是一个几何体的三视图,其中侧视图是一个边长为1的正三角形,俯视图是两个边长为1的正三角形拼成的菱形,则其体积为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知点A(2,4),直线l:x-2y+1=0.
(1)求过点A且平行于l的直线的方程;
(2)若点M在直线l上,且AM⊥l,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=x2,则f(x)在x=1处的导数为(  )
A.2xB.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.3男3女共6名学生排成一列,同性者相邻的排法种数为(  )
A.2种B.9种C.36种D.72种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若(x+$\frac{1}{x}$)(3x-$\frac{1}{x}$)n的展开式中各项的系数之和为64.
(Ⅰ)求n的值.
(Ⅱ)求展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若二项式($\sqrt{x}$-$\frac{2}{x}$)n的展开式共有7项,则n=6;展开式中的第三项的系数为60.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A={x|x2-2mx+m2-1<0},B={x|$\frac{1}{2}$<x<$\frac{2}{3}$},若B?A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在复平面内,若复数z1和z2对应的点分别是A(-2,-1)和B(0,1),则$\frac{{z}_{2}}{{z}_{1}}$=(  )
A.-$\frac{1}{5}$-$\frac{2}{5}$iB.-$\frac{2}{5}$-$\frac{1}{5}$iC.$\frac{1}{5}$+$\frac{2}{5}$iD.$\frac{2}{5}$+$\frac{1}{5}$i

查看答案和解析>>

同步练习册答案