精英家教网 > 高中数学 > 题目详情
17.若f(x)=x2,则f(x)在x=1处的导数为(  )
A.2xB.2C.3D.4

分析 求函数的导数,令x=1即可.

解答 解:函数的导数f′(x)=2x,
则f′(1)=2,
故选:B

点评 本题主要考查函数的导数的计算,要求熟练掌握掌握常见函数的导数公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知抛物线y=$\frac{1}{8}$x2与双曲线$\frac{{y}^{2}}{{a}^{2}}$-x2=1(a>0)有共同的焦点F,则双曲线的渐近线方程为y=$±\sqrt{3}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=$\left\{\begin{array}{l}{1-{x}^{2}(x≤1)}\\{{x}^{2}-2x-2(x>1)}\end{array}\right.$,则f[$\frac{1}{f(2)}$]=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x,y满足不等式$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,且函数z=2x+y-a的最大值为8,则常数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2lnx-$\frac{1}{2}$mx2-(1-2m)x,m∈R.
(Ⅰ)若函数f(x)的图象在x=1处的切线过点(2,-1),求实数m的值;
(Ⅱ)当m>-$\frac{1}{2}$时,讨论函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“因为指数函数y=ax是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”,导致上面推理错误的原因是(  )
A.大前提错B.小前提错
C.推理形式错D.大前提和小前提都错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表数据:
单价x(元)34567
销量y(件)7872696863
由表中数据,求得线性回归直线方程为$\hat y$=-6x+$\hat a$.若在这些样本点中任取一点,则它在回归直线左下方的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义:若两个二次曲线的离心率相等,则称这两个二次曲线相似.如图,椭圆C的中心在原点,焦点在x轴上,右顶点为A,以其短轴的两个端点B1,B2及其一个焦点为顶点的三角形是边长为6的正三角形,M是C上异于B1,B2的一个动点,△MB1B2的重心为G,G点的轨迹记为C1
(Ⅰ)(i)求C的方程;
(ii)求证:C1与C相似;
(Ⅱ)过B1点任作一直线,自下至上依次与C1、x轴的正半轴、C交于不同的四个点P,Q,R,S,求$\frac{|{B}_{1}S{|}^{2}-|PR{|}^{2}}{|AQ|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2a•sinωxcosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$+1(a>0,ω>0)的最大值为3,最小正周期为π.
(Ⅰ)求函数f(x)的单调递增区间.
(Ⅱ)若f(θ)=$\frac{7}{3}$,求sin(4θ+$\frac{π}{6}$)的值.
(Ⅲ)若存在区间[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

同步练习册答案