分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y-a得y=-2x+z+a,
平移直线y=-2x+z+a,
由图象可知当直线y=-2x+z+a经过点C时,直线y=-2x+z+a的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x-4y=-3}\\{3x+5y=25}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$,即C(5,2),
代入目标函数z=2x+y-a得z=2×5+2-a=8.
得12-a=8,则a=4,
故答案为:4
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$(1-ln2) | B. | $\sqrt{2}$(1-ln2) | C. | $\sqrt{2}$(1+ln2) | D. | $\frac{{\sqrt{2}}}{2}$(1+ln2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com