精英家教网 > 高中数学 > 题目详情
14.若(x+$\frac{1}{x}$)(3x-$\frac{1}{x}$)n的展开式中各项的系数之和为64.
(Ⅰ)求n的值.
(Ⅱ)求展开式中的常数项.

分析 (Ⅰ)令x=1,则$(x+\frac{1}{x}){(3x-\frac{1}{x})^n}$展开式中各项系数和为2n+1=64,解出n即可得出.
(Ⅱ)由(Ⅰ)知,$(x+\frac{1}{x}){(3x-\frac{1}{x})^n}$=$(x+\frac{1}{x}){(3x-\frac{1}{x})^5}$,要求展开式的常数项,只需求${(3x-\frac{1}{x})^5}$展开式中含$x和\frac{1}{x}$的项,利用通项公式即可得出.

解答 解:(Ⅰ)令x=1,则$(x+\frac{1}{x}){(3x-\frac{1}{x})^n}$展开式中各项系数和为2n+1=64,
解得:n=5.
(Ⅱ)由(Ⅰ)知,$(x+\frac{1}{x}){(3x-\frac{1}{x})^n}$=$(x+\frac{1}{x}){(3x-\frac{1}{x})^5}$,
要求展开式的常数项,只需求${(3x-\frac{1}{x})^5}$展开式中含$x和\frac{1}{x}$的项.
由通项公式得${T_{r+1}}=C_5^r{(3x)^{5-r}}{(-\frac{1}{x})^r}=C_5^r{3^{5-r}}{(-1)^r}{x^{5-2r}}$,
令5-2r=±1,得r=2或r=3.
所以该展开式中的常数项为$C_5^2{3^3}-C_5^3{3^2}=180$.

点评 本题主要考查二项展开式等基础知识,考查运算化简能力、推理计算能力、化归转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.某事业单位共公开招聘一名职员,从笔试成绩合格的6(编号分别为1-6)名应试者中通过面试选聘一名.甲、乙、丙、丁四人对入选者进行预测.甲:不可能是6号;乙:不是4号就是5号;丙:是1、2、3号中的一名;丁:不可能是1、2、3号.已知四人中只有一人预测正确,那么入选者是6号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x,y满足不等式$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,且函数z=2x+y-a的最大值为8,则常数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“因为指数函数y=ax是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”,导致上面推理错误的原因是(  )
A.大前提错B.小前提错
C.推理形式错D.大前提和小前提都错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表数据:
单价x(元)34567
销量y(件)7872696863
由表中数据,求得线性回归直线方程为$\hat y$=-6x+$\hat a$.若在这些样本点中任取一点,则它在回归直线左下方的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.把7个字符1,1,1,A,A,α,β排成一排,要求三个“1”两两不相邻,且两个“A“也不相邻,则这样的排法共有(  )
A.12种B.30种C.96种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义:若两个二次曲线的离心率相等,则称这两个二次曲线相似.如图,椭圆C的中心在原点,焦点在x轴上,右顶点为A,以其短轴的两个端点B1,B2及其一个焦点为顶点的三角形是边长为6的正三角形,M是C上异于B1,B2的一个动点,△MB1B2的重心为G,G点的轨迹记为C1
(Ⅰ)(i)求C的方程;
(ii)求证:C1与C相似;
(Ⅱ)过B1点任作一直线,自下至上依次与C1、x轴的正半轴、C交于不同的四个点P,Q,R,S,求$\frac{|{B}_{1}S{|}^{2}-|PR{|}^{2}}{|AQ|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{AC},\overrightarrow{AD}$和$\overrightarrow{AB}$在正方形网格中的位置如图所示,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λ-μ=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{5}{2}$D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知复数z=k-2i(k∈R)的共轭复数$\overline{z}$,且z-($\frac{1}{2}$-i)=$\frac{\overline{z}}{2}$-2i.
(Ⅰ)求k的值;
(Ⅱ)若过点(0,-2)的直线l的斜率为k,求直线l与曲线y=$\sqrt{x}$以及y轴所围成的图形的面积.

查看答案和解析>>

同步练习册答案