精英家教网 > 高中数学 > 题目详情
4.某事业单位共公开招聘一名职员,从笔试成绩合格的6(编号分别为1-6)名应试者中通过面试选聘一名.甲、乙、丙、丁四人对入选者进行预测.甲:不可能是6号;乙:不是4号就是5号;丙:是1、2、3号中的一名;丁:不可能是1、2、3号.已知四人中只有一人预测正确,那么入选者是6号.

分析 结合题意,进行假设,然后根据假设进行分析、推理,即可判断入选者.

解答 解:入选者不能是4号、5号,因为如果是4号或5号,则甲、乙、丁三个人的猜测都是正确的;
如果入选者是6号,那么甲、乙、丙的猜测是错的,只有丁的猜测是对的;
如果入选者是1、2、3中的一个,那么甲、丁的猜测是错的,乙、丙的猜测是对的;
根据题意“只有一人的猜测对的”,
所以入选者是6号.
故答案为:6.

点评 解答此类题应结合题意,进行假设,然后根据假设进行分析、推理,进而得出问题答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知复数z=$\frac{3-i}{1-i}$,则|z|=(  )
A.$\sqrt{5}$B.5C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:方程$\frac{x^2}{2-m}+\frac{y^2}{m-1}$=1所表示的图形是焦点在y轴上的双曲线,命题q:复数z=(m-3)+(m-1)i对应的点在第二象限,又p或q为真,p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=$\frac{π}{2}$.D,E分别为线段AB,BC上的点,且CD=DE=$\sqrt{2}$,CE=2EB=2
(1)证明:DE⊥平面PCD
(2)求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示是一个几何体的三视图,其中侧视图是一个边长为1的正三角形,俯视图是两个边长为1的正三角形拼成的菱形,则其体积为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知n∈N*,从集合{1,2,3,…,n}中选出k(k∈N,k≥2)个数j1,j2,…,jk,使之同时满足下面两个条件:①1≤j1<j2<…jk≤n; ②ji+1-ji≥m(i=1,2,…,k-1),则称数组(j1,j2,…jk)为从n个元素中选出k个元素且限距为m的组合,其组合数记为$C_n^{({k,m})}$.例如根据集合{1,2,3}可得$C_3^{({2,1})}=3$.给定集合{1,2,3,4,5,6,7},可得$C_7^{({3,2})}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{lnx-x}{x}$
(1)求函数f(x)的单调区间和极值;
(2)对于任意的非零实数k,证明不等式(e+k2)ln(e+k2)>e+2k2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知三个集合A={x|x2-3x+2=0},B={x∈R|x2-ax+a-1=0},C={x∈R|x2-bx+2=0},同时满足B?A,C⊆A的实数a、b是否存在?若存在,求出a、b的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若(x+$\frac{1}{x}$)(3x-$\frac{1}{x}$)n的展开式中各项的系数之和为64.
(Ⅰ)求n的值.
(Ⅱ)求展开式中的常数项.

查看答案和解析>>

同步练习册答案