分析 由分段函数可知f(-$\frac{1}{2}$)=${2}^{\frac{1}{2}}$,则f[f(-$\frac{1}{2}$)]=f(${2}^{\frac{1}{2}}$)=$lo{g}_{2}{2}^{\frac{1}{2}}=\frac{1}{2}$,画出分段函数的图象,数形结合得答案.
解答 解:由分段函数可知f(-$\frac{1}{2}$)=${2}^{\frac{1}{2}}$,
∴f[f(-$\frac{1}{2}$)]=f(${2}^{\frac{1}{2}}$)=$lo{g}_{2}{2}^{\frac{1}{2}}=\frac{1}{2}$;
由y=f(x)-k=0,
得f(x)=k.
令y=k与y=f(x),
作出函数y=k与y=f(x)的图象如图:![]()
由图可知,函数y=f(x)-k有且只有两个零点,则实数k的取值范围是$(\frac{1}{2},+∞)$.
故答案为:$\frac{1}{2}$;($\frac{1}{2}$,+∞).
点评 本题考查分段函数的应用,考查函数零点的判断,体现了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 患病 | 未患病 | 总计 | |
| 没服用药 | 22 | y | 60 |
| 服用药 | x | 50 | 60 |
| 总计 | 32 | t | 120 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com