精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函数f(x)的最小正周期及图象的对称轴;
(2)求函数f(x)在[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

分析 (1)利用两角和差的余弦公式以及诱导公式结合辅助角公式进行化简即可求函数f(x)的最小正周期及图象的对称轴;
(2)求出函数在[-$\frac{π}{12}$,$\frac{π}{2}$]上的取值范围,结合三角函数的单调性进行求解即可.

解答 解:(1)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$)=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+2sin(x-$\frac{π}{4}$)sin[$\frac{π}{2}$+(x-$\frac{π}{4}$)]
=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+2sin(x-$\frac{π}{4}$)cos(x-$\frac{π}{4}$)=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+sin(2x-$\frac{π}{2}$)=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x-cos2x
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$).
则函数f(x)的最小正周期T=$\frac{2π}{2}=π$,
由2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,
得2x=kπ+$\frac{2π}{3}$,k∈Z,
即x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
即图象的对称轴为x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z;
(2)∵-$\frac{π}{12}$≤x≤$\frac{π}{2}$,
∴-$\frac{π}{6}$≤2x≤π,
∴-$\frac{π}{3}$≤2x-$\frac{π}{6}$≤$\frac{5π}{6}$,
则当2x-$\frac{π}{6}$=$\frac{π}{2}$时,函数取得最大值为f(x)=sin$\frac{π}{2}$=1,
当2x-$\frac{π}{6}$=-$\frac{π}{3}$时,函数取得最小值为f(x)=sin(-$\frac{π}{3}$)=-$\frac{1}{2}$,
即函数的值域为[-$\frac{1}{2}$,1].

点评 本题主要考查三角函数的图象和性质,根据两角和差的余弦公式以及辅助角公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若三个单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|3$\overrightarrow{a}$+4$\overrightarrow{b}$-$\overrightarrow{c}$|的最大值为(  )
A.5+$\sqrt{2}$B.3+2$\sqrt{2}$C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设随机变量X~B(n,p),其中n=8,若EX=1.6,则DX=1.28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a=-2${∫}_{0}^{π}$sin(x+$\frac{π}{3}$)dx,求二项式(x2+$\frac{a}{x}$)5的展开式中x的系数及展开式中各项系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从集合{1,2,3,4}中随机取出两个不同的元素,它们的和为奇数的概率是(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y=$\frac{1}{8}$x2与双曲线$\frac{{y}^{2}}{{a}^{2}}$-x2=1(a>0)有共同的焦点F,则双曲线的渐近线方程为y=$±\sqrt{3}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在棱长为a的正方形OABC-O1A1B1C1中,点E,F分别是棱AB,BC上的动点,且AE=BF.
(Ⅰ)求证:A1F⊥C1E;
(Ⅱ)当三棱锥B1-EFB的体积取得最大值时,求二面角B-B1E-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$ 那么f[f(-$\frac{1}{2}$)]=$\frac{1}{2}$;若函数y=f(x)-k有且只有两个零点,则实数k的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2lnx-$\frac{1}{2}$mx2-(1-2m)x,m∈R.
(Ⅰ)若函数f(x)的图象在x=1处的切线过点(2,-1),求实数m的值;
(Ⅱ)当m>-$\frac{1}{2}$时,讨论函数f(x)的零点个数.

查看答案和解析>>

同步练习册答案