精英家教网 > 高中数学 > 题目详情

【题目】在2015﹣2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数 ,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.

1

2

3

4

5

6

7

8

9

10

根据统计表的信息:
(1)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;
(2)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;
(3)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.

【答案】
(1)解:根据投篮统计数据,在10场比赛中,

甲球员投篮命中率超过0.5的场次有5场,分别是4,5,6,7,10,

所以在随机选择的一场比赛中,

甲球员的投篮命中率超过0.5的概率是

在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10,

所以在随机选择的一场比赛中,乙球员的投篮命中率超过0.5的概率是


(2)解:设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A,

甲队员命中率超过0.5且乙队员命中率不超过0.5为事件B1

乙队员命中率超过0.5且甲队员命中率不超过0.5为事件B2

则P(A)=P(B1)+P(B2)= =


(3)解:X的可能取值为0,1,2,3.

P(X=0)= =

P(X=1)=

P(X=2)= =

P(X=3)= =

X的分布列如下表:

X

0

1

2

3

P

∵X~B(3, ),∴EX=3× =


【解析】(1)根据投篮统计数据,利用列举法能求出甲球员的投篮命中率超过0.5的概率和乙球员投篮命中率超过0.5的概率.(2)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件B1 , 乙队员命中率超过0.5且甲队员命中率不超过0.5为事件B2 . 由P(A)=P(B1)+P(B2),能求出甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率.(3)X的可能取值为0,1,2,3,且B~B(3, ),由此能求出X的分布列及数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点P为有公共焦点F1 , F2的椭圆和双曲线的一个交点,且cos∠F1PF2= ,椭圆的离心率为e1 , 双曲线的离心率为e2 , 若e2=2e1 , 则e1=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长为18 m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线yx2-6x+1与轴交于点,与轴交于 两点.

(1)求△的面积

(2)外接圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准如下:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知某学校学生的原始成绩均分布在[50,100]内,为了了解该校学生的成绩,抽取了50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出样本频率分布直方图如图所示.

(Ⅰ)求图中x的值,并根据样本数据估计该校学生学业水平测试的合格率;
(Ⅱ)在选取的样本中,从70分以下的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中成绩为D等级的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某镇有一块空地,其中 。当地镇政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖,其中都在边上,且,挖出的泥土堆放在地带上形成假山,剩下的地带开设儿童游乐场. 为安全起见,需在的周围安装防护网.

1)当时,求防护网的总长度;

2)若要求挖人工湖用地的面积是堆假山用地的面积的倍,试确定 的大小;

3)为节省投入资金,人工湖的面积要尽可能小,问如何设计施工方案,可使 的面积最小?最小面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点O和点F2(﹣ ,0)分别为双曲线 =1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,定义:dn=an+2+an﹣2an+1(n≥1),a1=1.
(1)若dn=an , a2=2,求an
(2)若a2=﹣2,dn≥1,求证此数列满足an≥﹣5(n∈N*);
(3)若|dn|=1,a2=1且数列{an}的周期为4,即an+4=an(n≥1),写出所有符合条件的{dn}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆E: + =1(a>b>0)的左顶点A(﹣2,0),且点(﹣1, )在椭圆上,F1、F2分别是椭圆的左、右焦点.过点A作斜率为k(k>0)的直线交椭圆E于另一点B,直线BF2交椭圆E于点C.

(1)求椭圆E的标准方程;
(2)若△CF1F2为等腰三角形,求点B的坐标;
(3)若F1C⊥AB,求k的值.

查看答案和解析>>

同步练习册答案